Proton-Antiproton Annihilations at FAIR - The PANDA Experiment

Inti Lehmann
Facility for Antiproton and Ion Research - FAIR

Spin Praha, July 2012

Overview

- Some puzzles in hadron physics
- Experimental approach
- PANDA detector set-up
- Physics highlights at PANDA

Some puzzles in hadron physics

Naive Picture of the Hadron

- Baryons
- e.g. proton, neutron
- 3 quarks
- half integer spin

- Mesons
- e.g. pion
- quarkantiquark
- integer spin

Closer Look

- Reality is more complicated

Semi-Naive Picture of the Hadron

- Hadrons
- contain quark-gluon sea
- quantum numbers carried by "dressed" valence quarks

Does this only allow baryons and mesons?

Puzzle 1: Exotic Hadrons

- Known hadrons
- contain quark-gluon sea
- quantum numbers carried by "dressed" valence quarks
- Exotic hadrons
- gluons contribute to quantum numbers
- no principle to forbid or suppress these

Why not observed, are they?

Indication: Overpopulation

- 7 candidates for 4 states with 0^{++} (Light quark sector)

2^{++}	$\begin{gathered} \mathrm{a}_{2} \\ 1320 \end{gathered}$	$\begin{gathered} \mathrm{f}_{2} \\ 1270 \end{gathered}$	$\begin{gathered} \mathrm{f}_{2} \\ 1525 \end{gathered}$	$\begin{gathered} \mathrm{K}_{2}^{*} \\ 1430 \end{gathered}$
1^{++}	$\begin{gathered} a_{1} \\ 1260 \end{gathered}$	$\begin{gathered} \mathrm{f}_{1} \\ 1285 \end{gathered}$	$\begin{gathered} \mathrm{f}_{1}^{\prime} \\ 1510 \end{gathered}$	$\mathrm{K}_{1 \mathrm{~A}}$
1^{+-}	$\begin{gathered} b_{1} \\ 1235 \end{gathered}$	$\begin{gathered} \mathrm{h}_{1} \\ 1170 \end{gathered}$	$\begin{gathered} \mathrm{h}_{1}^{\prime} \\ 1380 \end{gathered}$	$\mathrm{K}_{1 \mathrm{~B}}$
0^{++}				K_{0}^{*} 1430
	$\mathrm{a}_{0}(980)$ $\mathrm{a}_{0}(1450)$	$\mathrm{f}_{0}(1370)$ $\mathrm{f}_{0}(1500)$	$f_{0}(980)$ $f_{0}(1710)$	
	$\mathrm{L}=1$			

- States mix: nature difficult to determine

Example: Recent Finding

- COMPASS partial wave analysis
- Exotic $J^{P C}=1^{++}$wave found at 1.66 GeV

Phys. Rev. Lett. 104, 241803 (2010)

Charm Quark Sector

- More promising than light quark sector
- Narrower states
- Fewer states
- Less mixing

- Exotic heavy glueballs
- $\quad \mathrm{m}\left(0^{+-}\right)=4560(70) \mathrm{MeV}$
- $\mathrm{m}\left(2^{+-}\right)=3980(50) \mathrm{MeV}$
- Width unknown, but!
- Nature invests more likely in mass than in momentum

Charm Quark Sector

- More promising than light quark sector
- Narrower states
- Fewer states
- Less mixing

s
xotic heavy glueballs
$m\left(0^{+-}\right)=4560(70) \mathrm{MeV}$
- $m\left(2^{+-}\right)=3980(50) \mathrm{MeV}$
- Width unknown, but!
- Nature invests more likely in mass than in momentum

Puzzle 2: Charmonium Spectrum

- Positronium of QCD
- Until 2003
- no surprises
- well understood
- Example
- D spectrum

PANDA, Spin-Praha, July 2012

Puzzle 2: Charmonium Spectrum

- Example
- D spectrum

States known until 2003
D_{s}
$D_{S}^{*}(2112) \quad$ (Slac, 1984)
$D_{s 1}$ (2536) (Argus, 1989)
$D_{s 2}(2573)($ Cleo, 1994)
Discovered after 2003
$c s ? \begin{cases}D_{s 0}^{*}(2317) & (\text { BaBar, 2003 }) \\ D_{s 1}(2460) & (\text { Cleo, 2003 })\end{cases}$
$\begin{array}{ll}D_{s J}(2860) & (\text { BaBar, 2006 }) \\ D_{s J}^{*}(2700) & (\text { BaBar/Belle } \\ & 2006)\end{array}$

Findings at B Factories

$y(4260)$

Findings at B Factories

Belle $Y(3940)$
$y(4260)$

 channels Measure lution - high resol prod ction Belle

Puzzle 3: Nucleon Structure

- Form factors - well understood?
- Successful approach for decades
- Rosenbluth separation
- assuming single photon exchange

$$
\left(\frac{d \sigma}{d \Omega}\right)_{\text {Rosenbluth }}=\left[\frac{\left|G_{E}\right|^{2}+\tau\left|G_{M}\right|^{2}}{1+\tau}+2 \tau\left|G_{M}\right|^{2} \tan ^{2} \frac{\theta}{2}\right]\left(\frac{d \sigma}{d \Omega}\right)_{\text {Mott }}
$$

- Extract G_{E} and G_{M}

Puzzle 3: Nucleon Structure

- Form factor ratio $R=\mu_{p} G_{E} / G_{M}$
- Space like form factor

Puzzle 3: Nucleon Structure

- Form factor ratio $R=\mu_{p} G_{E} / G_{M}$
- Space like form factor
- unresolved discrepancy
- Time like form factor
- basically uncharted territory

Time and Space-Like Regions

- Closely related using dispersion relation
- fit to double polarisation measurements in space like region
- weak constraint: scarce data in time like region

Other Structure Functions

- Generalised Parton Distributions (GPDs)
- 2+1 dimensional picture of the nucleons
- Fourier transformations of GPDs

$$
q\left(x, b_{\perp}\right)=\int \frac{d^{2} \Delta_{\perp}^{2}}{(2 \pi)^{2}} H\left(x, 0,-\Delta_{\perp}^{2}\right) e^{-i \Delta_{\perp} \cdot b_{\perp}}
$$

Time-Like Domain

- Analoge models
- Time Like GPDs
- Generalised Distribution Amplitudes (GDAs)
-A. Afanasev, et al., arXiv:0903.4188 -M. Diehl, et al., Phys. Rev. Lett. 81 (1998)1782
-B. Pire, L. Szymanowski, Phys. Lett. B622:83-92,2005
- Transition Distribution Amplitudes (TDAs)

Time-Like Domain

- Available models
- Time Like GPDs
- Generalised Distribution Amplitudes (GDAs)
- Transition Distribution Amplitudes (TDAtIONS

Basically no experimental тол data available!

Puzzle Reminder

- 1) Exotic hadrons - observed or not?
- Search around $4 \mathrm{GeV} / \mathrm{c}^{2}$

- 2) Charmonium spectrum - unpredicted states!
- Check different production channels
- Scan with high resolution
- Measure with high statistics
- 3) Nucleon structure - form factor surprises
- Explore time-like region

Experimental Approach

Experimental Approach

- Gluon-rich environment

$$
\Rightarrow \text { Proton-antiproton annihilations }
$$

Experimental Approach

- Gluon-rich environment
\Rightarrow Proton-antiproton annihilations
- Formation of various states
\Rightarrow All (non-exotic) quantum numbers
\Rightarrow Large acceptance detector
\Rightarrow Fixed target exp. with zero degree acceptance

Experimental Approach

- Gluon-rich environment
\Rightarrow Proton-antiproton annihilations
- Formation of various states
\Rightarrow All QM, 4π (forward)
- Precise resonance scan
\Rightarrow High precision hadron beam (cooled)

Experimental Approach

- Gluon-rich environment
\Rightarrow Proton-antiproton annihilations
- Formation of various states
\Rightarrow All QM, 4π (forward)
- Precise resonance scan \Rightarrow High precision hadron beam (cooled)
- High statistics samples

\Rightarrow High luminosity and production cross section

Experimental Approach

- Gluon-rich environment
\Rightarrow Proton-antiproton annihilations
- Formation of various states
\Rightarrow All QM, 4π (forward)
- Precise resonance scan
\Rightarrow High precision hadron beam (cooled)
- High statistics samples
\Rightarrow High luminosity and production cross section
- Physics topics

$$
\Rightarrow \text { Energy range } \quad V_{\mathrm{s}}=2-5.5 \mathrm{GeV}
$$

s-hyperon, c-meson, c-hyperon

PANDA Detector Set-Up

Facility for Antiproton and Ion Research 戸̈anda

Atomic, applied and plasma physics ions, antiprotons

Hadron physics antiproton beams

See Diana Nicmorus' talk on Tuesday

Facility for Antiproton and Ion Research p̈anda

Aoday 11am: €526M cheque p asma phys
ions, ant
 ns
ar structure strophysics dioactive
n beams

See Diana Nicmorus' talk on Tuesday

PANDA at FAIR

- High Energy Storage Ring (HESR)
- Cooled antiprotons
- 1.5-15 GeV/c
- $\Delta p / p=10^{-4}-10^{-5}$

Inti Lehmann

FAlR

PANDA Collaboration

About 420 physicists from 53 institutions in 16 countries

U Basel
IHEP Beijing
U Bochum
IIT Bombay
U Bonn
IFIN－HH Bucharest
U \＆INFN Brescia
U \＆INFN Catania JU Cracow
TU Cracow IFJ PAN Cracow GSI Darmstadt
TU Dresden JINR Dubna （LIT，LPP，VBLHE）
U Edinburgh
U Erlangen
NWU Evanston

U \＆INFN Ferrara
U Frankfurt
LNF－INFN
Frascati
U \＆INFN Genova
U Glasgow
U Gießen
KVI Groningen
IKP Jülich I＋II
U Katowice
IMP Lanzhou
U Lund
U Mainz
U Minsk ITEP Moscow MPEI Moscow TU München
U Münster BINP Novosibirsk

IPN Orsay
U \＆INFN Pavia
IHEP Protvino
PNPI Gatchina
U of Silesia
U Stockholm
KTH Stockholm
U \＆INFN Torino Politecnico di Torino
U Piemonte Orientale， Torino
U \＆INFN Trieste
\cup Tübingen
TSL Uppsala
U Uppsala
U Valencia
SMI Vienna
SINS Warsaw
TU Warsaw
PANDA，Spin－Praha，July 2012

PANDA Experimental Set-Up

- Fixed target magnetic spectrometer experiment

PANDA Experimental Set-Up

Micro Vertex Detector

Micro Vertex Detector

- 4 barrels and 6 disks
- Continuous readout
- Inner layers: hybrid pixels ($100 \times 100 \mu \mathrm{~m}^{2}$)
- Outer layers: double sided strips
- Challenges
- Low mass supports
- Cooling in a small volume
- Radiation tolerance TDR submitted

Carbon fiber
cylindrical frame

Frame to support disks

PANDA Experimental Set-Up

Forward Trackers

Tracking Detectors

Central tracker (Straw Tubes)

- $\sigma_{r \phi} \sim 150 \mu \mathrm{~m}, \sigma_{z} \sim 1 \mathrm{~mm}$
- $\delta \mathrm{p} / \mathrm{p} \sim 1 \%$ (with MVD)
- Material budget $\sim 1 \% X_{0}$
- 5000 Straws
- $27 \mu \mathrm{~m}, 1 \mathrm{~cm} \varnothing, 150 \mathrm{~cm}$
- 1 bar overpressure

Particle Identification

PANDA PID Requirements:

- separate charged π, K, p, e, μ
- momentum range $200 \mathrm{MeV} / \mathrm{c}$ 10GeV/c

PID Processes:

$\pi, \mathrm{K}, \mathrm{p}$ below 1 GeV : energy loss micro vertex detector, trackers $\pi, \mathrm{K}, \mathrm{p}$ above 1 GeV : Cherenkov barrel DIRC, disc DIRC, RICH
π, K, p up to 4 GeV : time of flight TOF detectors
e and γ : electromagnetic showers electromagnetic calorimeter
μ : showers muon range system (magnet yoke)

PANDA Experimental Set-Up

PANDA Cerenkov Detectors

DIRC: Detection of Internally Reflected Cherenkov light

Disc DIRC

- Disc shaped radiator
- Readout at rim

PANDA Experimental Set-Up

Central Electro Magnetic Calorimeters (EMC)

Forward EMC

Electromagnetic Calorimeters

PANDA PWO Crystals

- PWO is dense and fast
- Low y threshold
- Challenges:
-temperature stablilisation to $0.1^{\circ} \mathrm{C}$
-radiation damage
-low noise electronics
- Delivery of crystals started

Backward Endcap, 560 PWO crystals

PANDA Experimental Set-Up

Central Time of
Flight (ToF) detectors
Forward ToF walls

PANDA Experimental Set-Up

Superconducting

solenoid magnet

> Large aperture dipole magnet

Superconducting Solenoid

- Features
- 2T field
- $4 m \times 1.9 m$ free space
- High field homogeneity
- Target pipe intersection
- Access on both sides
- Movement by 20m
- Muon range system
- Design
- Asymmetric split coil
- Internally wound
- Indirect cooling
- Opening doors
- Retractable platform
- Laminated return yoke

Large Aperture Dipole

- Features
- 2 Tm for particles scattered in $0-10^{\circ}$ (5° vertical)
- Allows momentum resolution <1\%
- Large aperture ($1 \times 3 \mathrm{~m}$) and short length (2.5 m)
- Ramping capability due to lamination

Field integral	2 Tm
Bending variation	$\leq \pm 15 \%$
Vertical Acceptance	$\pm 5^{\circ}$
Horizontal Acceptance	$\pm 10^{\circ}$
Ramp speed	$1.25 \% / \mathrm{s}$
Total dissipated power	360 kW
Total Inductance	0.87 H
Stored energy	2.03 MJ
Weight	220 t
Dimensions $(\mathrm{H} \times \mathrm{W} \times \mathrm{L})$	$3.88 \times 5.3 \times 2.5 \mathrm{~m}^{3}$
Gap opening $(\mathrm{H} \times \mathrm{W})$	$0.80-1.01 \times 3.10 \mathrm{~m}^{2}$

Approved TDR

Physics highlights at PANDA

Expected Highlights: 1) Exotics

- Charmed hybrids
- Feasible to detect at PANDA

- Glueballs below $3 \mathrm{GeV} / \mathbf{c}^{2}$
- Feasible to detect at PANDA

Expected Highlights: 2) Charmonium

- Charmonium States
- PANDA
- high statistics data
- direct production
- precise resonance scans (10-5)
- channels not coupling to J / ψ and $\psi '$

Expected Highlights: 3) Form factors

- Time like form factors
- $\mathbf{R}=\mu_{\mathrm{P}} \mathbf{G}_{\mathrm{E}} / \mathbf{G}_{\mathrm{M}}$ with unprecedented precision

- absolute value of $\left|\mathrm{G}_{\mathrm{m}}\right|$ up to $30(\mathrm{GeV} / \mathrm{c})^{2}$

PANDA Physics Performance Report: arXiv:0903.3905

Expected Highlights: 4) Nucl. Structure 户̈anda

- Nucleon Structure
- Drell-Yan Processes
- Time like equivalents of Generalised Parton Distributions (GPDs)

Expected Highlights: 5), 6), ...

- In medium mass modifications
- extension to the charm sector
- Extension of nuclear chart
- double hypernuclei
- And much more...

A. Hayashigaki, PLB 487 (2000) 96

Conclusions

- Open issues in
- Exotic hadrons
- Charmonium spectrum
- Nucleon structure

- Best addressed by
- Proton-antiproton annihilations
- Fixed target experiment
- Energy $\sqrt{ } \mathrm{s}=2-5.5 \mathrm{GeV}$
- Versatile detector set up
- PANDA is the solution!
- Design and constr. on track www-panda.gsi.de

Conclusions

- Open issues in
- Exotic hadrons
- Charmonium spectrum
- Nucleon structure
- Bestaddressed by
- Cannot wait
- forctar2018
for 2018

- PANDA is the solution!
- Design and constr. on track www-panda.gsi.de

Backup

Backup

- PANDA range

Spin Exotic Summary (Light Quarks)

thanks to G. Adams, RPI

	Experiment	Mass	Width	Decay	Citation
$\pi_{1}(1400)$	E852	$1359(+16-14)(+10-24)$	$314(+31-29)(+9-66)$	$\eta \pi$	PR D60, 092001
	Crystal Barrel	$1400(+20-20)(+20-20)$	$310(+50-50)(+50-30)$	$\eta \pi$	PL B423,175
	Crystal Barrel	$1360(+25-25)$	$220(+90-90)$	$\eta \pi$	PL B446,349
	Obelix	$1384(+28-28)$	$378(+58-58)$	$\rho \pi$	EPJ C35, 21
$\pi_{1}(1600)$	E852	$1593(+8-8)(+29-47)$	$168(+20-20)(+150-12)$	$\rho \pi$	PR D65, 072001
	E852	$1597(+10-10)(+45-10)$	$340(+40-40)(+50-50)$	$\eta \eta^{\prime} \pi$	PRL 86, 3977
	Crystal Barrel	$1590(+50-50)$	$280(+75-75)$	$\mathrm{b}_{1} \pi$	PL B563,140
	E852	$1709(+24-24)(+41-41)$	$403(+80-80)(+115-115)$	$\mathrm{f}_{1} \pi$	PL B595,109
	E852	$1664 \pm 8 \pm 10$	$185 \pm 25 \pm 28$	$\left(\mathrm{~b}_{1} \pi\right)^{-}$	submitted to PRL
$\pi_{1}(2000)$	E852	$2001 \pm 30 \pm 92$	$\left(\mathrm{~b}_{1} \pi\right)^{0}$	preliminary	
	E852	$2014 \pm 20 \pm 16$	$333 \pm 52 \pm 49$	$\mathrm{f}_{1} \pi$	PL B595,109
$\mathrm{h}_{2}(1950)$	E852	$1954 \pm 8(s t a t)$.	$138 \pm 3(s t a t)$.	$\left(\mathrm{b}_{1} \pi\right)^{-}$	submitted to PRL

Puzzle 4: Spin Structure

- Proton spin

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+L_{q}+\Delta G+L_{g}
$$

- Studied in space-like reactions
- $\Delta \Sigma$: quark spin
- fraction about $1 / 3$
- $\Delta \mathbf{G}$: gluon spin
- first results
- L_{q} : quark angular momentum
- unknown
- L_{g} : gluon angular momentum
- unknown

Space and Time Like Processes

- Space like
- elastic lepton scattering
- deep virtual Compton scattering
- Time like

- electron-positron collisions
- proton-antiproton annihilations

Glueball Predictions

Lattice QCD calculations by Morningstar and Peardon; PRD60 (1999) 034509

Flux tube calc. by
Brower, Mathur and Tan. Nucl. Phys. B587 (2000)249

Target Spectrometer

Forward Spectrometer

Generalised Parton Distributions

- Functions of 3 variables
- parton momentum fraction x
- skewedness ξ
- p momentum transfer t
- 4 (chirality conserving) quark GPDs

$$
\begin{aligned}
& H(x, \xi, t), E(x, \xi, t) \\
& \widetilde{H}(x, \xi, t), \widetilde{E}(x, \xi, t)
\end{aligned}
$$

Model Calculation

- GPD model, constrained by experimental form-factor data

- Density distribution in impact parameter plane for quarks. Proton transv. polarised along x axis.
[P.Kroll, AIP Conf.Proc.904:76-86,2007]

Facility for Antiproton and Ion Research 戸̈anda

Technical Challenges • cooled beams, rapid cycling superconducting magnets

Modularised Start Version

Costs MSV

Accelerators and personnel (including Super-FRS)
Civil construction (excluding site related costs) 502 M€

FAIR contribution to experimental end stations *
78 M€

FAIR GmbH personnel \& running until 2018 (>8 years)
47 M€

Grand Total MSV, Modules 0-3
1027 M€
in 2005 €
(inflation escalation until 2018: ca. $+50 \%$)

* Total experimental end stations (excluding Super-FRS): ca. $210 \mathrm{M} €(2005)=315 \mathrm{M} €(2018)$

Funding Modules 0-3

Contracting Party	Contribution (in 2005 Me)
Finland	5.00
France	27.00
Germany	705.00
India	36.00
Poland	23.74
Romania	11.87
Russia	178.05
Slovenia	12.00
Sweden	10.00
Total	$1.008,66$

Timelines

$\langle 2011\rangle 2012\rangle 2013\rangle 2014\rangle 2015\rangle\langle 2016\rangle\langle 2017\rangle 2018\rangle 2019$

Submission building permits
7) Site preparation

8 Civil construction contracts
9 Building of accelerator \& detector components
10) Completion of civil construction work
11) Installation \& commissioning of accelerators and detectors
12) Data taking

FAIR Open Space Planning

Other Structure Functions

Form Factors

Density in transverse impact parameter space

Parton Distribution Functions

Momentum fraction in longitudinal space

- Combined approach...

