

Proton-Antiproton Annihilations at FAIR - The PANDA Experiment

Inti Lehmann Facility for Antiproton and Ion Research - FAIR

Spin Praha, July 2012

Overview

 Some puzzles in hadron physics

- Experimental approach
- PANDA detector set-up
- Physics highlights at PANDA

Some puzzles in hadron physics

Naive Picture of the Hadron

U

u

đ

d

a

- e.g. proton, neutron
- a 3 quarks
- half integer spin

- Mesons
 - e.g. pion
 - quarkantiquark
 - integer spin

Closer Look

Reality is more complicated

Inti Lehmann

Semi-Naive Picture of the Hadron

- Hadrons
 - contain quark-gluon sea
 - quantum numbers carried by "dressed" valence quarks

Puzzle 1: Exotic Hadrons

- Known hadrons
 - contain quark-gluon sea
 - quantum numbers carried by "dressed" valence quarks
- Exotic hadrons
 - gluons contribute to quantum numbers
 - no principle to forbid or suppress these

Why not observed, are they?

Inti Lehmann

PANDA, Spin-Praha, July 2012

Indication: Overpopulation

7 candidates for 4 states with 0⁺⁺ (Light quark sector)

States mix: nature difficult to determine

Inti Le	hmann
---------	-------

Example: Recent Finding

Exotic J^{PC} = 1⁻⁺ wave found at 1.66 GeV

PANDA, Spin-Praha, July 2012

Charm Quark Sector

- More promising than light quark sector
 - Narrower states
 - Fewer states
 - Less mixing

 Nature invests more likely in mass than in momentum

No data!

Charm Quark Sector

- More promising than light quark sector •
 - **Narrower states**
 - **Fewer states**
 - Less mixing

PANDA, Spin-Praha, July 2012

Prediction

1-- 1-+

lВ

10²

Puzzle 2: Charmonium Spectrum

- Positronium of QCD
- Until 2003
 - no surprises
 - well understood
- Example
 - D_s spectrum

Puzzle 2: Charmonium Spectrum

Danda

PANDA, Spin-Praha, July 2012

Findings at B Factories

Findings at B Factories

Puzzle 3: Nucleon Structure

- Form factors well understood?
- Successful approach for decades
 - Rosenbluth separation
 - assuming single photon exchange

$$\left(rac{d\sigma}{d\Omega}
ight)_{
m Rosenbluth} = \left[rac{|m{G}_{m{E}}|^2 + au|m{G}_{m{M}}|^2}{1+ au} + 2 au|m{G}_{m{M}}|^2 an^2 rac{ heta}{2}
ight] \, \left(rac{d\sigma}{d\Omega}
ight)_{
m Mott}$$

Extract G_E and G_M

Inti Lehmann

PANDA, Spin-Praha, July 2012

panda

lepton

virtua

photon

nucleon

Puzzle 3: Nucleon Structure

Space like form factor

Puzzle 3: Nucleon Structure

- Form factor ratio $R = \mu_p G_E / G_M$
- Space like form factor
 - unresolved discrepancy
- Time like form factor
 - basically uncharted territory

PANDA, Spin-Praha, July 2012

Time and Space-Like Regions

- **Closely related using dispersion relation**
 - fit to double polarisation measurements in space like region
 - weak constraint: scarce data in time like region

da

Other Structure Functions

- **Generalised Parton Distributions (GPDs)**
- 2+1 dimensional picture of the nucleons •
 - Fourier transformations of GPDs

$$q(x,b_{\perp}) = \int \frac{d^2 \Delta_{\perp}^2}{(2\pi)^2} H(x,0,-\Delta_{\perp}^2) e^{-i\Delta_{\perp} \cdot b_{\perp}}$$

the structure of the nucleon! x~0.8

x~0.3

Inti Lehmann

۷ ¥

PANDA, Spin-Praha, July 2012

x<0.1

n a n d a

Time-Like Domain

panda

- Analoge models
 - Time Like GPDs
 - Generalised Distribution Amplitudes (GDAs)

Transition Distribution Amplitudes (TDAs)

[•]A. Afanasev, et al., arXiv:0903.4188
•M. Diehl, et al., Phys. Rev. Lett. 81 (1998)1782
•B. Pire, L. Szymanowski, Phys. Lett. B622:83-92,2005

Time-Like Domain

- Available models
 - Time Like GPDs
 - Generalised Distribution Amplitudes (GDAs)

•A. Afanasev, et al., arXiv:0903.4188
•M. Diehl, et al., Phys. Rev. Lett. 81 (1998)1782
•B. Pire, L. Szymanowski, Phys. Lett. B622:83-92,2005

e⁺

Puzzle Reminder

- 1) Exotic hadrons observed or not?
 - Search around 4 GeV/c²
- 2) Charmonium spectrum unpredicted states!
 - Check different production channels
 - Scan with high resolution
 - Measure with high statistics
- 3) Nucleon structure form factor surprises
 - Explore time-like region

hybrid

- Gluon-rich environment
 - \Rightarrow Proton-antiproton annihilations

- Gluon-rich environment
 - ⇒ Proton-antiproton annihilations
- Formation of various states
 - \Rightarrow All (non-exotic) quantum numbers
 - \Rightarrow Large acceptance detector
 - \Rightarrow Fixed target exp. with zero degree acceptance

- **Gluon-rich environment**
 - Proton-antiproton annihilations
- **Formation of various states** \Rightarrow All QM, 4π (forward)
- **Precise resonance scan**
 - \Rightarrow High precision hadron beam (cooled)

PANDA 3500 rab 510 203520 MeV

Inti Lehmann

panda

0000

- Gluon-rich environment
 - \Rightarrow Proton-antiproton annihilations
- Formation of various states \Rightarrow All QM, 4π (forward)
- Precise resonance scan
 - ⇒ High precision hadron beam (cooled)
- High statistics samples
 - ⇒ High luminosity and production cross section

Inti Lehmann

d a

00000

CBall
 E835

1 8

PANDA Detector Set-Up

Inti Lehmann

Facility for Antiproton and Ion Research

FAIR

Atomic, applied and plasma physics ions, antiprotons

Nuclear matter relativistic nuclear collisions

Hadron physics antiproton beams

Nuclear structure and astrophysics radioactive ion beams

See Diana Nicmorus' talk on Tuesday

Facility for Antiproton and Ion Research

See Diana Nicmorus' talk on Tuesday

Inti Lehmann

PANDA at FAIR

PANDA Collaboration

About 420 physicists from 53 institutions in 16 countries

PANDA, Spin-Praha, July 2012

U Basel **IHEP Beijing U** Bochum **IIT Bombay U** Bonn **IFIN-HH Bucharest U & INFN Brescia U & INFN Catania JU Cracow TU Cracow IFJ PAN Cracow GSI** Darmstadt **TU Dresden JINR Dubna** (LIT, LPP, VBLHE) **U** Edinburgh **U** Erlangen **NWU Evanston**

U & INFN Ferrara U Frankfurt **LNF-INFN** Frascati U & INFN Genova **U** Glasgow **U** Gießen **KVI** Groningen IKP Jülich I + II **U** Katowice **IMP** Lanzhou **U** Lund **U** Mainz **U** Minsk **ITEP Moscow MPEI** Moscow **TU München U** Münster **BINP Novosibirsk**

IPN Orsay **U & INFN Pavia IHEP** Protvino **PNPI** Gatchina **U** of Silesia **U** Stockholm **KTH Stockholm U & INFN Torino** Politecnico di Torino **U** Piemonte Orientale, Torino **U & INFN Trieste U** Tübingen **TSL Uppsala U** Uppsala **U** Valencia **SMI** Vienna **SINS Warsaw TU Warsaw**

Inti Lehmann

PANDA Experimental Set-Up

Solenoid

Target Spectrometer

Forward Spectrometer

Dipole

Beam

Interaction point

Inti Lehmann

PANDA Experimental Set-Up

Micro Vertex Detector 110

Micro Vertex Detector

- 4 barrels and 6 disks
- Continuous readout
- Inner layers: hybrid pixels (100x100 µm²)
- Outer layers: double sided strips

- Challenges
 - Low mass supports
 - Cooling in a small volume
 - Radiation tolerance
 TDR submitted

Target pipe

Carbon fiber

cylindrical frame

E CE

PANDA Experimental Set-Up

Forward Trackers Central Tracker

Tracking Detectors

panda

Central tracker (Straw Tubes)

- $\sigma_{r\phi}$ ~150µm, σ_{z} ~1mm
- $-\delta p/p~1\%$ (with MVD)
- Material budget ~1% X₀
- 5000 Straws
- 27 µm, 1 cm Ø, 150 cm

TDR submitted

1 bar overpressure

40

Particle Identification

PANDA PID Requirements:

separate charged π, K, p, e, μ momentum range 200MeV/c – 10GeV/c

PID Processes:

- π, K, p below 1GeV: energy loss
 micro vertex detector, trackers
- π, K, p above 1GeV: Cherenkov
 barrel DIRC, disc DIRC, RICH
- π, K, p up to 4GeV: time of flight
 TOF detectors
- e and γ: electromagnetic showers
 electromagnetic calorimeter
 - μ : showers
 - muon range system (magnet yoke)

PANDA Experimental Set-Up

PANDA Cerenkov Detectors

DIRC: Detection of Internally Reflected Cherenkov light

panda

PANDA Experimental Set-Up

Forward EMC

Central Electro Magnetic Calorimeters (EMC)

Inti Lehmann

Electromagnetic Calorimeters

PANDA PWO Crystals
PWO is dense and fast
Low γ threshold

Challenges:

temperature
stablilisation to 0.1°C
radiation damage
low noise electronics

Delivery of crystals started

Approved FDR

Barrel Calorimeter • 11000 PWO Crystals • LAAPD readout, $2x1cm^2$ • $\sigma(E)/E\sim1.5\%/\sqrt{E} + const.$ **Forward Endcap**

• 4000 PWO crystals

panda

- High occupancy in center
- LA APD or VPT

Backward Endcap, 560 PWO crystals

PANDA, Spin-Praha, July 2012

44

PANDA Experimental Set-Up

Central Time of Forward ToF walls Flight (ToF) detectors

Muon range systems

panda

PANDA Experimental Set-Up

Superconducting solenoid magnet

Large aperture dipole magnet

Superconducting Solenoid

- Features
 - 2T field
 - 4m x 1.9m free space
 - High field homogeneity
 - Target pipe intersection
 - Access on both sides
 - Movement by 20m
 - Muon range system
- Design
 - Asymmetric split coil
 - Internally wound
 - Indirect cooling
 - Opening doors
 - Retractable platform
 - Laminated return yoke

Large Aperture Dipole

- **Features**
 - 2Tm for particles scattered in 0 10° (5° vertical)
 - Allows momentum resolution <1%</p>
 - Large aperture (1x3m) and short length (2.5m)
 - Ramping capability due to lamination

Field integral	2 Tm
Bending variation	≤ ±15%
Vertical Acceptance	±5°
Horizontal Acceptance	±10°
Ramp speed	1.25%/s
Total dissipated power	360 kW
Total Inductance	0.87 H
Stored energy	2.03 MJ
Weight	220 t
Dimensions ($H \times W \times L$)	3.88 × 5.3 × 2.5 m ³
Gap opening (H × W)	0.80 - 1.01 × 3.10 m ²

Approved TDR

Physics highlights at PANDA

Expected Highlights: 1) Exotics

- Charmed hybrids
 - Feasible to detect at PANDA

- Glueballs below 3 GeV/c²
 - Feasible to detect at PANDA

PANDA, Spin-Praha, July 2012

Inti Lehmann

50

Expected Highlights: 2) Charmonium

- Charmonium States
 - PANDA

5-22222000

- high statistics data
- direct production
- precise resonance scans (10⁻⁵)
- channels not coupling to J/ψ and ψ'

PANDA, Spin-Praha, July 2012

panda

Expected Highlights: 3) Form factors

_ ⊇ ≥

Time like form factors

 R = μ_pG_E/G_M with unprecedented precision

PANDA Physics Performance Report: arXiv:0903.3905

 absolute value of |G_M| up to 30(GeV/c)²

PANDA, Spin-Praha, July 2012

Inti Lehmann

Expected Highlights: 4) Nucl. Structure

- Nucleon Structure
 - Drell-Yan
 Processes

• Time like equivalents of Generalised Parton Distributions (GPDs)

Marco Maggiora's " talk on Tuesday

e⁺, μ⁺

mm

e⁺, μ⁺

e, µ

Expected Highlights: 5), 6), ...

panda

- In medium mass modifications
 - extension to the charm sector
- Extension of nuclear chart
 - double hypernuclei
- And much more...

A. Hayashigaki, PLB 487 (2000) 96

Conclusions

- Open issues in
 - Exotic hadrons
 - Charmonium spectrum
 - Nucleon structure
- Best addressed by
 - Proton-antiproton annihilations
 - Fixed target experiment
 - **Energy** $\sqrt{s} = 2 5.5 \text{ GeV}$
 - Versatile detector set up
- PANDA is the solution!
 - Design and constr. on track
 www-panda.gsi.de

Conclusions

- **Open issues in**
 - Exotic hadrons
 - **Charmonium spectrum**
 - Nucleon structure
- Best addressed by
 - Cannot waits

 - Fixed target experiment
 Fory 2018eV
 - Versatile detector set up
- PANDA is the solution!
 - Design and constr. on track www-panda.gsi.de

Backup

Inti Lehmann

Backup

PANDA, Spin-Praha, July 2012

Spin Exotic Summary (Light Quarks)

thanks to G. Adams, RPI

	Experiment	Mass	Width	Decay	Citation
π ₁ (1400)	E852	1359 (+16-14) (+10-24)	314 (+31-29) (+9-66)	ηπ	PR D60, 092001
	Crystal Barrel	1400 (+20-20) (+20-20)	310 (+50-50) (+50-30)	ηπ	PL B423,175
	Crystal Barrel	1360 (+25-25)	220 (+90-90)	ηπ	PL B446,349
	Obelix	1384 (+28-28)	378 (+58-58)	ρπ	EPJ C35, 21
π ₁ (1600)	E852	1593 (+8-8) (+29-47)	168 (+20-20) (+150-12)	ρπ	PR D65, 072001
	E852	1597 (+10-10) (+45-10)	340 (+40-40) (+50-50)	η'π	PRL 86, 3977
	Crystal Barrel	1590 (+50-50)	280 (+75-75)	$b_1\pi$	PL B563,140
	E852	1709 (+24-24) (+41-41)	403 (+80-80) (+115-115)	$f_1\pi$	PL B595,109
	E852	1664 <u>+</u> 8 <u>+</u> 10	185±25±28	$(b_1\pi)^-$	submitted to PRL
	E852	≅ 1700		$(b_1\pi)^0$	preliminary
π ₁ (2000)	E852	2001±30±92	333±52±49	$f_1\pi$	PL B595,109
	E852	2014±20±16	230±32±73	$(b_1\pi)^-$	submitted to PRL
h ₂ (1950)	E852	1954 <u>+</u> 8 (stat.)	138±3 (stat.)	$(b_1\pi)^0$	preliminary

Puzzle 4: Spin Structure

- Proton spin
 - $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + L_q + \Delta G + L_g$
- Studied in space-like reactions
- $\Delta\Sigma$: quark spin
 - fraction about 1/3
- △G:gluon spin
 - first results
- L_q : quark angular momentum
 - unknown
- L_g : gluon angular momentum
 - unknown

Space and Time Like Processes

e'

n

x-ξ

p

e⁺, μ⁺

e, μ

- Space like
 - elastic lepton scattering
 - deep virtual Compton scattering

Time like

•

- electron-positron collisions
- proton-antiproton annihilations

*

γ

 e^+, μ^+

D

·e, μ

е

p

 π^+, K^+, p, D

VVV-Y

π¯,**K**¯,**p**,**D**

Ly

x+ξ

GPDs(x,ξ,t)

t

25

mm

Glueball Predictions

panda

Target Spectrometer

Forward Spectrometer

Generalised Parton Distributions

- skewedness ξ
- p momentum transfer t
- 4 (chirality conserving) quark GPDs

 $H(x,\xi,t), E(x,\xi,t), \\ \widetilde{H}(x,\xi,t), \widetilde{E}(x,\xi,t)$

Inti Lehmann

•

Model Calculation

up quarks

down quarks

Density distribution in impact parameter plane for quarks.
 Proton transv. polarised along x axis.

[P.Kroll, AIP Conf.Proc.904:76-86,2007]

Inti Lehmann

da

Facility for Antiproton and Ion Research

HESR

PANDA

CR-RESR

p-linac

- 10¹²/s; 1.5 GeV/u; ²³⁸U²⁸⁺
- 10¹⁰/s ²³⁸U⁷³⁺ up to 35 GeV/u
- 3x10¹³/s 30 GeV protons

Secondary Beams

range of radioactive beams up to 1.5 - 2 GeV/u; up to factor 10 000 higher in intensity than presently
antiprotons 3 - 30 GeV

Allart

Storage and Cooler Rings

- radioactive beams
- 10¹¹ antiprotons 1 15 GeV/c, stored and cooled

Technical Challenges

cooled beams, rapid cycling superconducting magnets

NESR

PANDA, Spin-Praha, July 2012

FAIR

100 m

SIS 100/300

CBM

Super

FLAIR

FRS

HADES

Modularised Start Version

Inti Lehmann

Costs MSV

Accelerators and personnel (including Super-FRS)		502 M€
Civil construction (excluding site related costs)		400 M €
FAIR contribution to experimental end stations *		78 M€
FAIR GmbH personnel & running until 2018 (>8 years)		47 M€
Grand Total MSV, Modules 0 - 3	3	1027 M€
	(inflation escalation until 20	in 2005 €

* Total experimental end stations (excluding Super-FRS): ca. 210 M€ (2005) = 315 M€ (2018)

PANDA, Spin-Praha, July 2012

Funding Modules 0-3

Contracting Party	Contribution (in 2005 M€)
Finland	5.00
France	27.00
Germany	705.00
India	36.00
Poland	23.74
Romania	11.87
Russia	178.05
Slovenia	12.00
Sweden	10.00
Total	1.008,66

- Spain expected to join soon (with 11.87 M€)
- China and the UK are potential Associate FAIR Members and will contribute to the experiments (6.6 M€)

panda

Timelines

2011 2012 2013 2014 2015 2016 2017 2018 2019

6

7

8

9

10

Submission building permits

- Site preparation
- **Civil construction contracts**
- Building of accelerator & detector components
- Completion of civil construction work
- Installation & commissioning of accelerators and detectors
- Data taking

FAIR Open Space Planning

Inti Lehmann

PANDA, Spin-Praha, July 2012

Other Structure Functions

Density in transverse impact parameter space

Momentum fraction in longitudinal space

Combined approach...

panda