
FAIR Commissioning & Control WG

Status, Strategy & Concepts for 2018 and beyond

Ralph J. Steinhagen, S. Reimann, D. Severin for the FC²WG

^{*} based on 2015/16 FC2WG presentations & meeting minutes

Integrated Luminosity per experiment

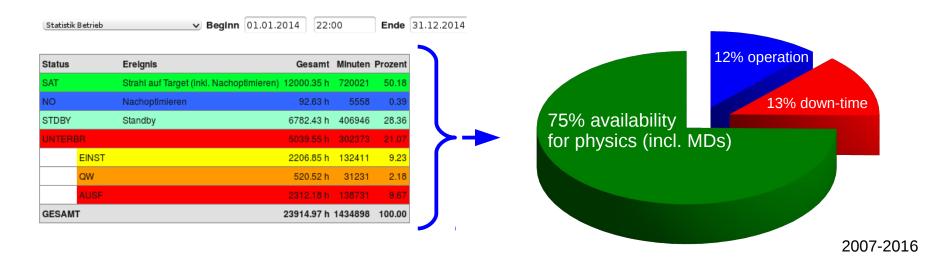
$$\frac{\int \mathcal{L}(t) dt}{\left[\int \mathcal{L} dt\right]_{\text{ref}}} \sim \int \frac{dN_{\text{ions}}/dt}{\epsilon_{\text{x,y,s}}} \cdot \varepsilon_{\text{FAIR}} dt$$

Experiment constraints:

- dN_{ions}/dt constant (spill-structure)
- $dN_{ions}/dt|_{max}$ constraints
- ...
- beam brightness: $N_{ions} \& \varepsilon_{x,y,s}$
 - x 10-100 higher intensities N_{ions}
 - x 10 beam energies
 - → new:
 - machine protection
 - activation/loss minimisation (ALARA)

FAIR efficiency (simplified):

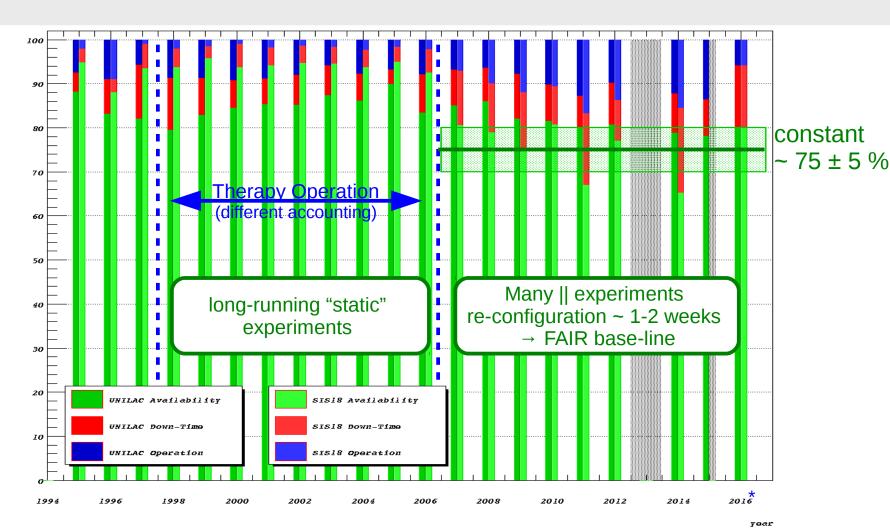
$$arepsilon_{
m FAIR} pprox rac{\langle t_{
m physics}
angle}{\langle t_{
m physics}
angle + \langle t_{
m operation}
angle + \langle t_{
m down\text{-}time}
angle}$$


Primary FC²WG goals:

- 1. efficient operation
- 2. better & safe beam control

... across the whole accelerator facility

FAIR SIS18 Operation Experience & Efficiency 1995-2016: U. Scheeler, S. Reimann, P. Schütt et al.



- simple^{1,2} estimate, but relates to qualitative control room experience:
 - presently: '~ 1 shift UNILAC' + '1 shift SIS18+TL setup' ↔ 1-2 weeks of experiments
 - potential target after 2-3 years of FAIR operation:
 - simple experiments (e.g. attached to SIS18/SIS100): 1-2 shift setup ↔ 1-2 weeks beam-on-target
- Need to factor in efficiency evolution: early beam commissioning
 → reaching final beam parameter
 - N.B. early SIS100-only availability indications (C. Omet et al.): 66 %

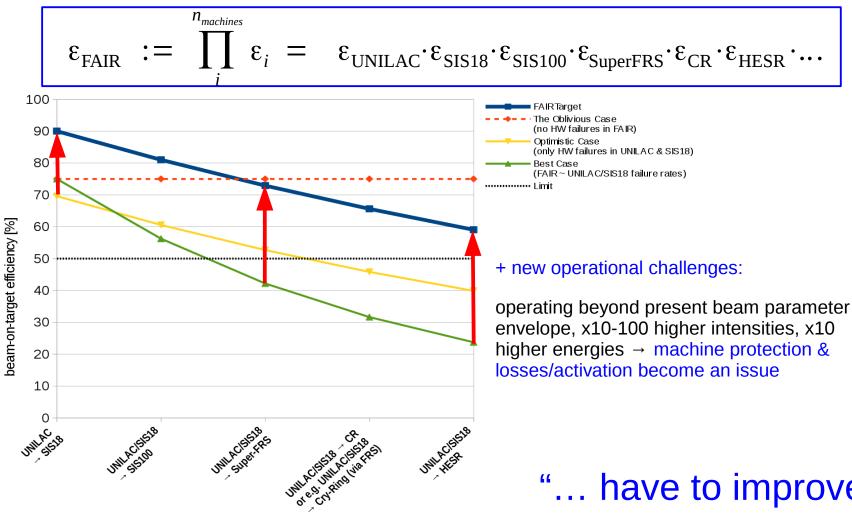
¹possibly strong assumption that new machines can be operated with the same routine, ease and efficiency as the present GSI infrastructure, ... ² complex beam chains (e.g. HESR) with long beam setup times are typically run longer/more static than shorter (SIS18 experiments)

Based on: U. Scheeler, S. Reimann, P. Schütt et al., "Accelerator Operation Report", GSI Annual Scientific Reports 1992 – 2015 + 2016 (D. Severin) https://www.gsi.de/en/work/research/library_documentation/gsi_scientific_reports.htm

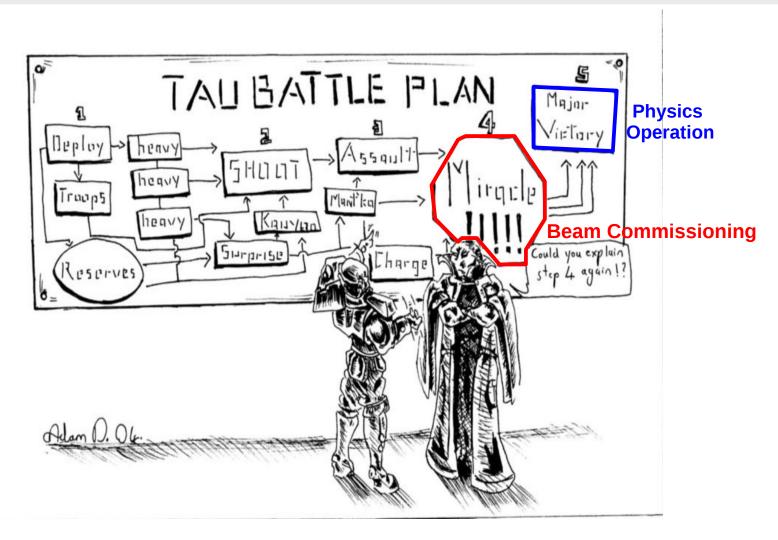
N.B. ion source exchanges are factored out from UNILAC & SIS18 data (~ constant overhead)

Availability: experiments + detector tests + machine development + beam to down-stream accelerators;

Down-time: unscheduled down-time + standby; Operation: accelerator setup + re-tuning


* 2018 operation limitations:

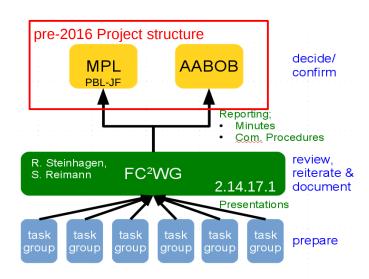
- only ½ UNILAC (w/o A3 & A4)
- only 1 element in SIS18


Beam-on-Target figure of merit (FoM) of ~75% \rightarrow FAIR-BoT (efficiency $\varepsilon_{\text{FAIR}}$):

... have to improve!"

Need to be more explicit w.r.t. 'item 4' for commissioning and operation of FAIR.

Proposal to follow a long-term strategy and 'lean principles':


- Continuous improvement
 - Right processes to produce right results and for getting it right the first time
 - commissioning procedures as evolving operation standard
 - system integration: definition of what, how and when (prioritisation) is needed
 - Prevention of inefficiencies, inconsistencies & waste by design
 - 'poka-yoke' or 'error proofing' principle culture of stopping and fixing
 - 1. early, when and where they occur (at the source)
 - 2. with low-intensity beam rather than with high-intensity beam
 - 3. addressing first basic parameters before complex higher-order effects
 - Examples:
 - first fix injection, trajectory, orbit, Q/Q' before addressing space-charge or slow-extraction problems
 - important losses for low-intensity beam have larger impact for high-intensity beam (→ activation)
 - pilot-beam concept: always verify machine safety with low-intensities before moving on to high-intensity beams
- Respect for people "develop people, then build products"
 - optimise operation ↔ smart tools & procedures, e.g. beam-based feedbacks, sequencer, ...
 - automate routine task so that operator talents are utilised and focused on more important tasks
 - training, investment in and development of people minimise overburden/strain of personnel
 - FAIR is a large facility and needs wider support: communicate concepts and strategy to broader base → FC²WG

Scope: coordination, development and follow-up of a coherent and sustainable concept, strategy and technical guide-lines/specifications for

- 1.Commissioning¹,
- 2.Control², and
- 3. Operation

of the whole³ FAIR Accelerator Complex

- Broken down into 2 Work Packages:
 - 2.14.17.1 FC²WG -- FAIR Commissioning & Control WG (link to: 2.14.10.1, 2.x.[3,4,6,7 & 12])
 - development, engineering check of the concepts and functional guidelines (acc. tech-experts, equip-GL)
 - EDMS signatory process:: MPL, MKs, main equip.-GL, head FC²WG (as approval leader)
 - 2.14.17.2 FCC-WG FAIR Control Centre WG (link to: 2.14.10.10)
 - technical control room infrastructure: consoles, furniture, IT infrastructure, etc. (mainly CO-IN, OP, Exp-reps.)

¹ commissioning covering the initial commissioning, subsequent re-commissioning & assisted operation phases (prior to 'regular operation')

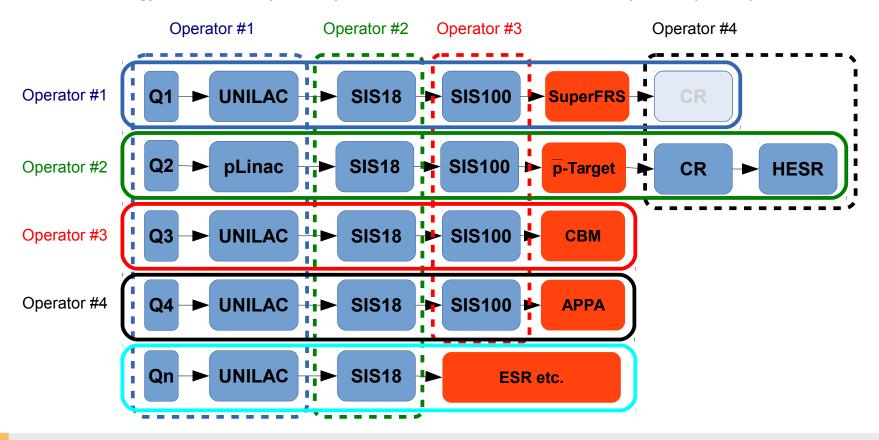
² N.B. 'control' here dt. "Anlagenkontrolle"

³ including all existing GSI and future FAIR accelerators as well as machine-experiment specific CO interfaces (e.g. target steering, spill control, data exchange)

FAIR Commissioning & Control WG http://fair-wiki.gsi.de/FC2WG/

- FAIR Commissioning & Control Working Group
 - platform to discuss, coordinate and work-out FAIR commissioning and operation
 - open to all who can participate and contribute to this subject!

FC²WG Control Topics – more than "Control System" & Data Supply




- Facility & Interface Analysis
 - Procedures: HWC, HWC-'Machine Check Out', BeamCommissioning, BC-Stage A (pilot beams), BC-Stage B (intensity ramp-up), BC-Stage C (nominal/production operation) Beam parameters, FAIR performance model, optimisation, Accelerator & Beam Modes
- Beam Instrumentation & Diagnostics System Integration
 - Intensity (DCCTs) & beam loss (BLMs) → Beam Transmission Monitoring System (BTM), trajectory & orbit (BPMs), Q/Q', optics (LOCO & phase-advance), longitudinal & transverse emittance (FCTs. WCM, screens, IPM, etc.), Δp/p, long, bunch shape (FCTs, Tomography), abort gap monitoring, ...
- Accelerator Hardware System Integration
 - Power converter, magnets, magnet model, RF, injection/extraction kicker, tune kicker/AC-dipole, beam dump, collimation/absorbers, cryogenics, vacuum, radiation monitoring, k-modulation, machineexperiment interfaces
- Control System
 - Archiving system, analog signal acquisition, test-beds, timing, bunch-to-bucket transfer, cyber security, role-based-access, middleware, RT & Feedbacks, daemons
- Components
 - post-mortem, management of critical settings (safe-beam settings), machine protection, interlocks, beam quality checks, daemons, 'Page One', aperture model, ...
- Applications
 - Sequencer (semi-automated procedures), fixed-displays, ...
 - Beam-Based Applications, Cycle-to-Cycle Feedbacks & GUIs → second talk

- Some important OP boundary conditions:
 - A) Compared to GSI, FAIR facility size and complexity increases roughly by a factor 4
 - B) Expect some improvement but 'Operator' & 'System Expert' will likely remain a scarce resource
- One strategy item: 'One Operator per Accelerator Domain' vs. 'One Operator per Experiment':

• Purpose:

- Communication of intended accelerator operation to experiments, FAIR and wider community
 - · what to expect and when, beam time performance tracking & analysis
- Conditioning of control sub-system responses
 - e.g. logging, interlocks, management of critical settings (MCS & RBAC), machine sequencer, access system, ...
 - · associated rules of what is allowed, when, where etc. e.g.:
 - Limit parameter changes during data taking aka. 'Stable Beams'/'Production Runs'
 - No high-intensity beam injected into an 'empty' machine
 - Block certain operation during unsafe mode of operation

Main modes:

- 1) Accelerator (Machine) Modes
 - · covering rule sets outside of beam operation
 - defined per accelerator/transfer-line segment
- 2) Beam Modes
 - · covering rule sets during beam operation
 - defined per accelerator/transfer-line segment and beam-production-chain
- proposal: extend this concepts also to experiment targets
 - required for safe primary-beam intensity ramp-up & OP-Exp. Ha
 - more fine-grained options for facility availability, performance tra

Quality Management	Document Type:	Document Number: F-TC-C-07	Date: 02.10.2015		
FAIR @ KS SS IL	Technical Concept	Template Number:	Page 1 of 15		

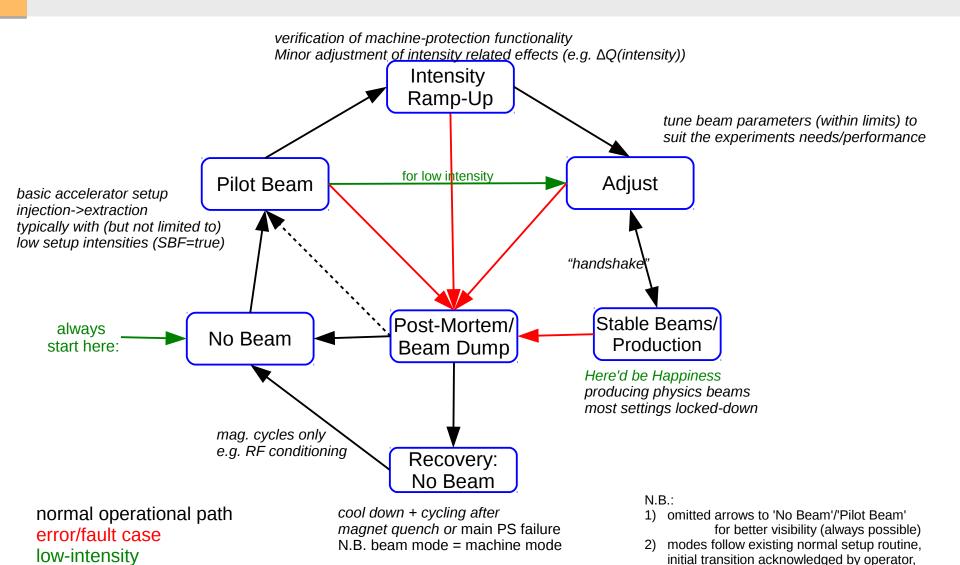
Document Title:	Accelerator and Beam Modes
Description:	Technical Concept for definition and integration of Accelerator Modes and Beam Modes in the accelerator control system
Division/Organization:	CSCO,PBSP
Field of application:	Project FAIR@GSI, existing GSI accelerator facility
Version	V 0.2

Abstract

This technical concept proposes two fundamental modes: the 'acce'erator mode' covering rule sets and operational sequence outside of beam operation and that are defined per accelerator or beam-line section (e.g., shutdown, setup, physics run, etc.); and the 'beam mode' covering rule sets during beam operation and that are defined per accelerator or beam-line section and Beam-Production-Chain (e.g. no beam, pilot beam, stable beam, etc.).

The purpose of these modes is to communicate the intended accelerator operation, and to condition the various control sub-system responses (e.g. archiving, intendock and fast-beam-abort systems, management of critical settings, etc.). The accelerator control system will distribute this information to the accelerator devices, experiments and wider FAIR community.

Prepared by:	Checked by:	Approved by MPLs + Mks:						
R. Steinhagen	S. Jülicher (CO)	F. Hagenbuck (HEBT)						
R. Bär	I. Lehmann	M. Winkler (Super-FRS)						
	C. Omet (SIS-100 MP)	O . D olins kyy (CR)						
	D. Ondreka (System Planning)	R. Brodhage (p-Linac) P. Spiller (SIS-100) K. Knie (p-bar Separator)						
	A. Reiter (BI)							
	P. Schütt (Operation)							
	D Severin	H. Reich-Sprenger (Common Systems						
	D. Severin	H. Kollmus (Cryogenics)						
		R. Bär (Controls)						
		R. Steinhagen (FAIR Comm. & Control)						
		S. Reimann (Operation)						
	I							


copy on:

https://fair-wiki.gsi.de/FC2WG/

FAIR FAIR Beam Modes – State Diagram

subsequent driven automatically by sequencer

- ... collect and store all pertinent accelerator data centrally to facilitate the analysis and tracking of the accelerator performance as well as its proper function.
- Combined Archiving and Post-Mortem storage concepts
- · Aim at storing maximum reasonable amount of data
 - facilitates data mining (performance trends, rare failures, ...)
 - key to understanding and improving accelerator performance
- · Milestones:
 - Conceptual prototype for 2016/17 (in-kind)
 - Aim at testing this for > 2018

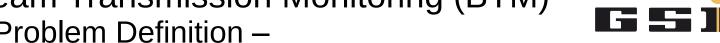
_			
Λ	rch	11 /1	$n\alpha$
$\boldsymbol{\frown}$	ıUı	IVI	нu
			- 3

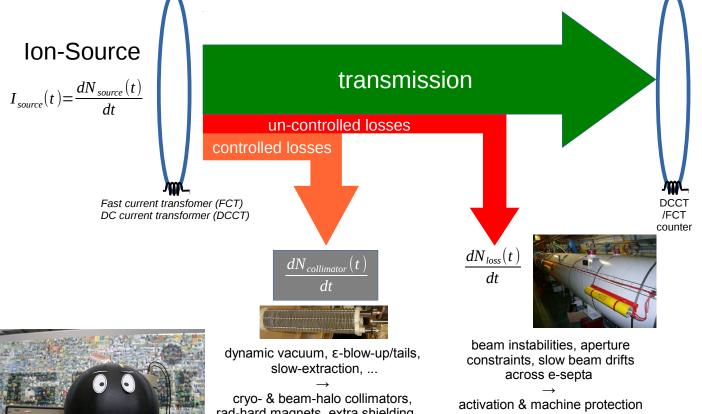
Post-Mortem

Quality Management	Document Type:	Document Number: F-DS-C-11e	Date: 2016-07-11		
F(AİR	Detailed Specification	Template Number: Q-FO-QM-0005	Page 1 of 24		

Document Title:	Detailed Specification of the FAIR Accelerator Control System Component "Archiving System"
Description:	This document is the Detailed Specification of the accelerator control system component 'Archiving System'. Its task is to collect and store all pertinent accelerator data centrally to facilitate the analysis and tracking of the accelerator performance as well as its proper function.
Division/Organization:	csco
Field of application:	FAIR Project, existing GSI accelerator facility
Version	V 4.5

Prepared by:	Checked by:	Approved by:				
V. Rapp	FAIR-C2WG-ALL	R. Bär (Controls)				
R. Steinhagen	A. Reiter (BI)	R. Steinhagen(FAIR Comm. & Control)				
	M. Schwickert (BI)					
	S. Jülicher (CO)					
	J. Fitzek (CO)					
	S. Reimann (OP)					
	P. Schütt (OP)					
	C. Omet (SIS-100 MP)					
	D. Ondreka (System Planning)					
	I. Lehmann (Machine-Exp.)					
	D. Severin (Machine-Exp.)					
	MPLs & MCs*					


Final Engineering Check! copy on:


https://fair-wiki.gsi.de/FC2WG/

Beam Transmission Monitoring (BTM) – Problem Definition –

Experiment primary (secondary)

 $I_{target}(t) = \frac{dN_{target}(t)}{dt}$

ions-on-target/s

online dosimetry (abs. reference)

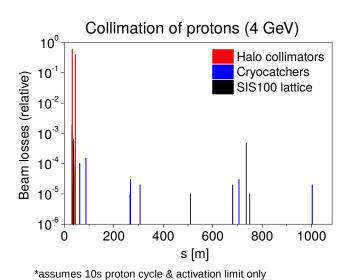
rad-hard magnets, extra shielding, ...

less-avoidable losses (may need to accept a given amount)

avoidable losses

(ALARA: should minimise before MP & Activation limits kick in)

§§ Radiation Permit – limits on total dose per year (facility & external)



SIS100 beam parameters and equivalent to 1 W/m (number of particles)

Beam	Injection energy	Extraction energy	1 W/m equivalent (injection)	1 W/m equivalent (extraction)	Beam intensity
Protons	4 GeV	29 GeV	1.5×10 ⁹	2.1×10 ⁸	2×10 ¹³
⁴⁰ Ar ¹⁸⁺ ions	1.6 GeV/u	12 GeV/u	1×10 ⁸	1.3×10 ⁷	1×10 ¹¹
²³⁸ U ⁹²⁺ ions	1.3 GeV/u	10 GeV/u	2×10 ⁷	2.5×10 ⁶	1.5×10 ¹⁰

• From the beam loss maps tolerable beam losses* (% of the beam) can be identified.

Beam	Loss criteria (injection)	Loss criteria (extraction)	Tolerable losses (injection)	Tolerable losses (extraction)
Protons	1 W/m	1 W/m	10 %	5 %
⁴⁰ Ar ¹⁸⁺ ions	2 W/m	1 W/m	30 %	6 %
²³⁸ U ⁹²⁺ ions	4 W/m	2 W/m	20 %	10 %

Caution: '1 W/m' is only indicative! existing operation, shielding and radiation permit limits proton losses to <3% @ 29 GeV and nominal intensities!

→ should aim to be significantly below that limit (ALARA)

^{*}for comparison: CERN-PS: 4-8% losses achieved (data courtesy R. Steerenberg, 19th March 2012) Caution: for protons this implies near-perfect two-stage collimation system

FAIR Beam Transmission & ALARA

- Importance of Beam Transmission Monitoring:
 - 1.) Performance: key accelerator tuning parameter & "Every ion lost in the accelerator is an ion lost for physics"
 - 2.) Machine-Protection: minimising risk of combined failures & reducing stress on MP system, before losses become an operational issue
 - 3.) ALARA: minimisation of activation and radiation permit compliance
- Gretchen Frage: What are 'As-Low-As-Reasonably-Achievable' Losses?
 - 'golden standard': should exhaust reasonable common operation practices of controlling beam parameter known to induce particle loss ("KISS in mind" – 'actual risk mitigation' vs. 'operational availability'):
 - **A) low-intensity beams**: extraction/injection matching + closed-orbit cycle-to-cycle feedbacks control + tune & chromaticity control + emittance blow-up monitoring
 - **B)** high-intensity beams: <the above> + optics correction + detailed collimation + quantitative slow-extraction optimisation + ...
 - → 'acceptable losses' := losses remaining after having performed above pre-defined steps
- Real-World Challenge:
 - May not achieve required BTM performance using beam current transformers alone, or would need to impose unrealistic BI design parameters
 - %-level resolutions for stable beam conditions achievable but accuracy typically only 1-3% abs.
 - → Include BLMs and RadMons as complementary input to BTM system
 - single BLM resolution: 0.1%@injection down to 10-6@extr. for 1.5-1011 U28+/s lost on septa wires

Specification to be completed by Q4-2016 Presentations & draft copies on: https://fair-wiki.gsi.de/FC2WG/

FAIR COMMISSIONING EST

FAIR one-of-a-kind prototype, pushing the ion intensity & other limit

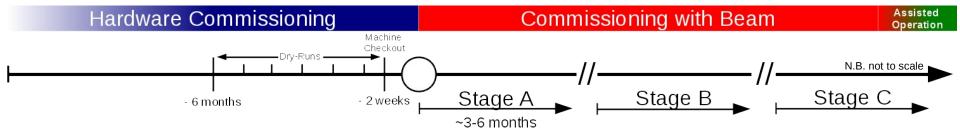
Should maintain realistic goals & strategy how-to reach them

- Develop a (initial/re-)commissioning and operation strategy:
 - MoU between various stake-holders (AP, BI, CO, RF, ...)
 - define when, where and how the individual accelerator systems should fit in
 - Identify and define missing procedures, equipment and tools, e.g.:
 - define, check the need or priority of applications vs. 'use cases'
 - define, check integration and interface between specific equipment and CO/OP environment
 - Focus first on commonalities across then specifics within individual accelerators
 - MPLs/MCs define pace & resources of how fast to achieve the above
 - Dissemination/knowledge transfer from groups that constructed and performed the initial HW commissioning to the long-term operation
 - training of operational crews (physics, operation, tools, ...)
 - Scheduling tool for technical stops to follow-up possible issues found

^{*}Procedure aims not only at the initial first but also subsequent re-commissioning e.g. after (long) shut-downs, mode of operation changes and/or regular operation

- Distinguish two forms of 'commissioning':
 - A)Hardware Commissioning (HWC → SAT A)
 - conformity checks of the physical with contractual design targets,
 - || commissioning of individual systems & tasks ↔ MPLs/equipment group responsibility

B)Commissioning with Beam (BC → "SAT B" ...)


- Commissioning of beam-dependent equipment
- Focus on tracking beam progress through the along the beam production chain (BPC)
 - threading, injection, capture, acceleration and extraction
- + 'Dry-Runs': pre-checks at the end of HWC in view of beam operation:
 - Checks conformity of system's controls integration and readiness for Commissioning with Beam
 - check as much control/system functionality without beam as possible
 - Machine ist put into a state assuming that beam could be injected into the ring/segment
 - unavailable devices/systems are at first ignored, noted down, and followed-up at a defined later stage

Terminology:

- Dry-runs: a rehearsal of the accelerator performance/function, starting typically six month before the targeted real BC
 - needs to (partially) repeated after shut-down or longer technical stop with substantial modifications
 - initial frequency: 1-2 days every month
 - frequency increased depending on the outcome of the initial dry-run tests
- Machine-Checkout: intense accelerator performance tests (e.g. machine patrols, magnet/PC heat runs, etc.), typically two weeks before BC
 - needs to repeated after every shut-down or longer technical stop
 - repeated also on the long-term during routine operation of existing accelerators (already existing procedures/usus for existing machines)

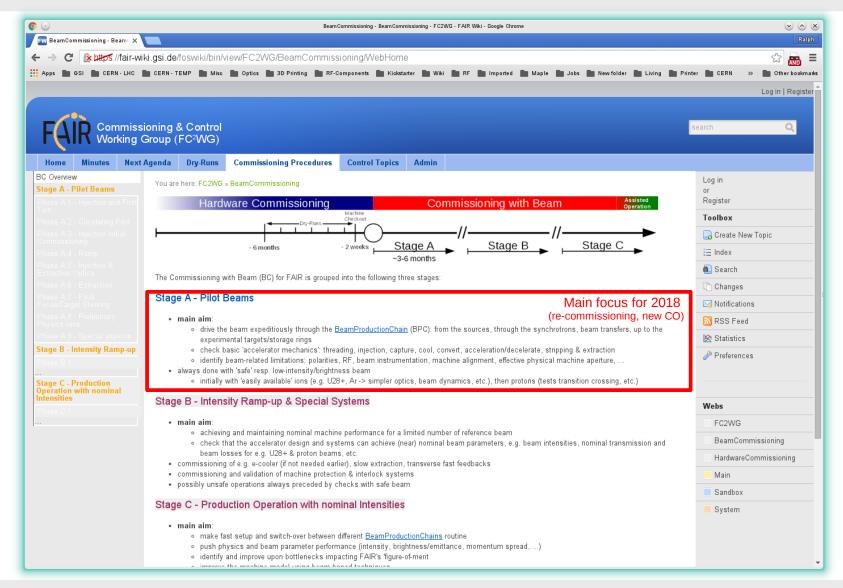
- Split Beam Commissioning into three stages:
 - A) Pilot beams/"easily available" ions (e.g. U28+, Ar)
 - basic checks: threading, injection, capture, cool, convert, acceleration/decelerate, stripping & extraction
 - always done with 'safe' ie. low-intensity/brightness beam
 - Ions: simpler optics, beam dynamics → Protons: transition crossing

B) Intensity ramp-up & special systems

- achieving and maintaining of nominal transmission and beam losses
- commissioning of e.g. e-cooler, slow extraction, transverse fast feedbacks
- commissioning and validation of machine protection & interlock systems
- · Possibly unsafe operations always preceded by checks with safe beam

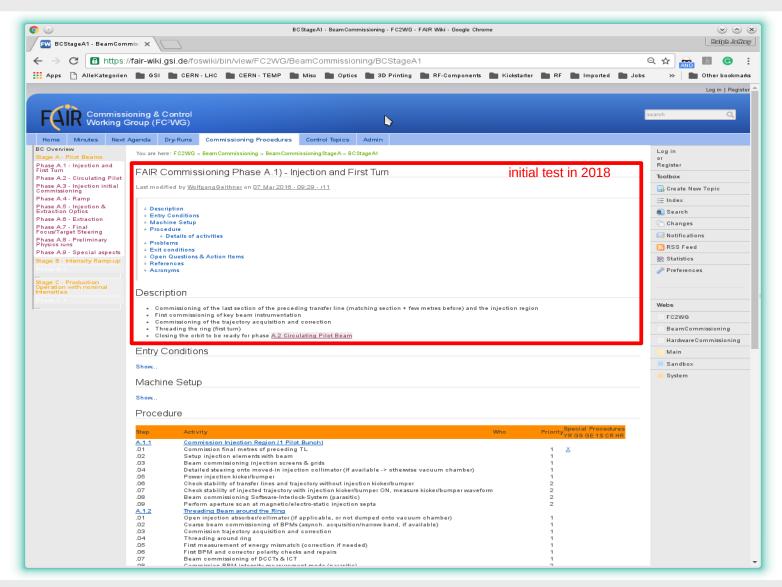
C) Production operation with nominal intensities

(N.B. first time counted as 'commissioning' or 'assisted operation' → later: 'regular operation')


- push physics and beam parameter performance (emittance, momentum spread, ...)
- · identify and improve upon bottlenecks impacting FAIR's 'figure-of-merit
- make fast setup and switch-over between different beam production chains routine

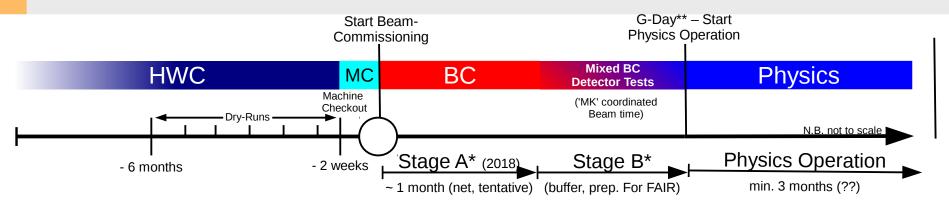
Example: FAIR Commissioning Procedures

https://fair-wiki.gsi.de/FC2WG/BeamCommissioning



R Example: FAIR Commissioning Procedures

https://fair-wiki.gsi.de/FC2WG/BeamCommissioning

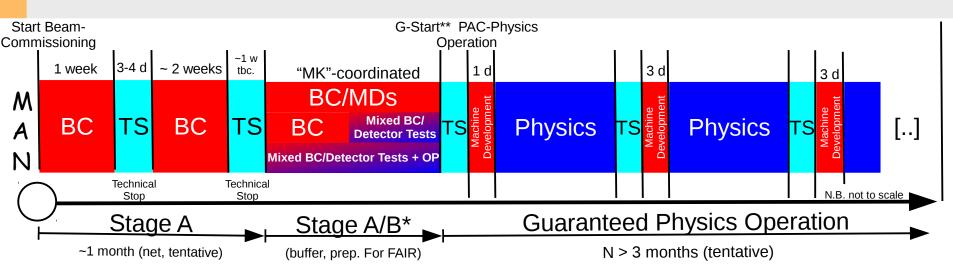


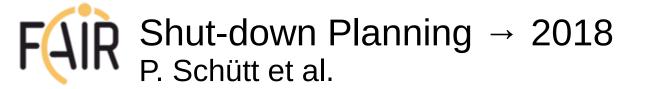
Recommissioning & Operation in 2018 I/II

https://fair-wiki.gsi.de/FC2WG/HardwareCommissioning/

- Hardware Commissioning → coordinated by Sub-Project-Leaders & Machine Coordinators
 - link-existing facilities (GAF), upgrades, machine re-alignment, "SATs", HW systems (equip. groups),
- Dry-Runs for all machines post (possibly also UNILAC), each two days, fixed dates (
 experts availability), starting:
 - Dry-Run #1 17.10.2017: CO-core: LSA, Timing System, Archiving System, SCUs, CO core application, ...
 - Dry-Run #2 14.11.2017: as before + tbd.
 - Dry-Run #3 12.12.2017: as before + tbd.
 - Dry-Run #4 09.01.2018: as before + BI + related applications
 - Dry-Run #5 06.02.2018: as before + Experiments (proposal) + Machine-Experiment Interfaces
 - Dry-Run #6 20.02.2018: as before + AEG + "last-minute" checks
 - Dry-Run #7 06.03.2018: buffer
- Machine-Checkout intensive "last minute checks" (N.B closed tunnel/machine):
 - UNILAC: -1 month → BC- 'day 0'
 - patrols, heat runs: RF & power supply conditioning, ...
 - SIS, ESR, CRY: -3 weeks → BC- 'day 0'
 - patrols, heat runs: RF & power supply/AEG conditioning, safety systems: personnel safety, access system, legal ZKS & RP checks (§66 Abs. 2 StrlSchV), "very last-minute" checks/bug fixes: vacuum, power, BI, CO, ...

^{*} in 2018: light-version w.r.t. commissioning of new machines


^{** &}quot;guaranteed" start physics operation (Plan A), no hick-ups, sacrificial buffer being activities related to 'Stage B'


Recommissioning & Operation in 2018 II/II

https://fair-wiki.gsi.de/FC2WG/BeamCommissioning

- Stage-A: Initial Beam Commissioning (BC): 2 dedicated 3 week@24h/7 BC blocks, main aim:
 - drive beam expeditiously through the Beam Production Chain: sources → synchrotrons & beam transfers → exp. targets & storage rings
 - check basic 'accelerator mechanics': threading, injection, capture, cool, convert, acceleration/decelerate, stripping & extraction
 - identify beam-related limitations: polarities, RF, beam instrumentation, machine alignment, effective physical machine aperture, ...
- Immediately followed by dedicated, scheduled Technical Stop (TS)
 - needed for follow-up of HW (tunnel) and SW issues (CO, ...)
- Stage-A/B*: Mixed-BC, Machine-Development, Detector Tests (aka. "splash events" for experiments) & Operator Training
 - N.B. "old machine" but completely new CO, substantial modifications
- Physics operation: as promised/targeted nett 3 months (to be confirmed), grouped into 2-3 blocks interleaved with
 - TS: routine maintenance → increases overall availability, follow-up of OP/CO/equipment issues + major ion species/source changes
 - MDs: follow-up of beam physics issues, CO improvements (e.g. beam-based FBs), improve facility to reach nominal FAIR parameters
 - N.B. also better for guaranteeing smooth restart/picking-up of physics operation after technical stops (experts availability)

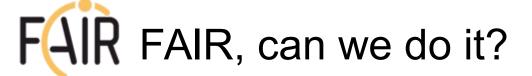
Ende Strahlzeit SIS Mon 18.07.16 Feb Apr Mai Aug Sep Dez Nov GaF-Vorarbeiten Sanierung MSR im BG Restart SIS18 (dry runs) Ionenquellen, Unilac Mon 18.07.16 - Fre 06.01.17 10.07.17 - 29.09.17 23.1.-17.3.16 Mon 20.03.17 - Fre 09.06.17 Die 17.10.17 - Mon 30.04.18 02.05.18 - 10.07.18 Extraktions-beamline wieder aufbauen, ggf. HHD neu konfiguri... SIS18 H=2 Strahlzeit für Experimente SIS- Beschleunigerkomponenten abgedeckt **RF System** Sep 2016? Mon 02.01.17 - Mon 27.11.17 Mon 27.11.17 - Mon 19.02 18 Die 10.07.18 - Mit 07.11.18 Reparatur Elektronenkühler ESR Alignment SIS/ESR/HEBT Inbetriebnahme ESR Mon 29.08.16 - Fre 23.06.17 Mit 03.01.18 - Die 27.03.18 Mit 13.06.18 - Fre 30.11.18 Umstellung von Leonhardstanne nach Freifeld Nord Abnahmeprüfung Vakuumsanierung Nordbogen ESR Mon 22.08.16 - Fre 16.06.17 Mon 04.09.17 - Fre 24.11.17 8.1.-16.2.18 Rückbau TS1MU1etc. Brandschutzmaßnahmen (GAF) im SIS-Tunnel Mon 23.01.17 - Mon 27.11.17 Sep 2016? Ende VMS und NODAL GaF: Baumaßnahmen GAF: Ende Risiko-Die 26.07.16 abgeschlossen Zeitraum Mit 03.01.18 Mon 30.04.18

heligrün: Inbetriebnahme
heliblau: Gerätetest
orange: Strahlzeit flexibel, ohne PAC-Vergabe
gelb: Shutdownarbeit am Beschleuniger
kursiv, brauner Grund: Vorgabe von Bauprojekten
(GAF, Brandschutz, etc.)
kursiv, rote Schrift: Vorgang behindert andere Arbeiten

Detailed discussion in U. Weinrich's presentation

FAIR Accelerator Operation in 2018 – DRAFT – 📻 📻 👚

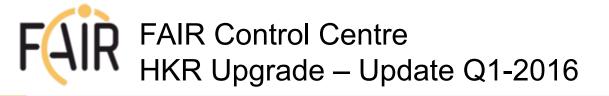
2018 Version vom 06.07.2016 (S.Reimann)

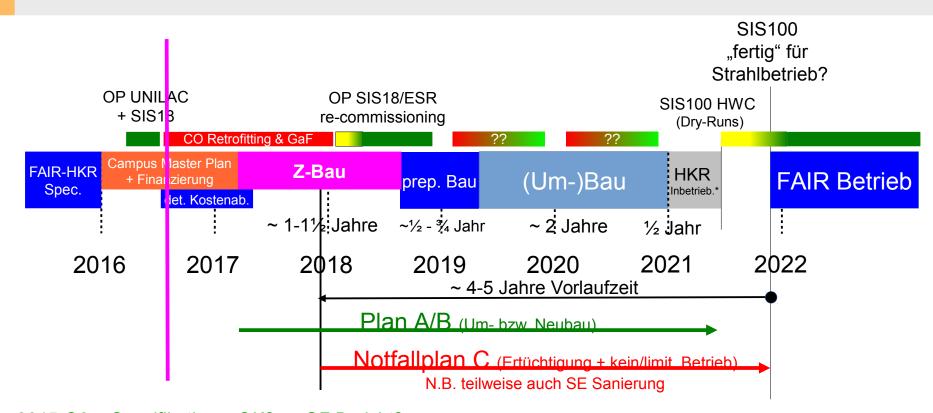

IQ
UNILAC
SIS18
HEST
ESR
CRYRING

								FERI	EN									
Jan	Feb	Mar	Apr	Ma	/	Jun		Jul		Aug		Sep	(Oct		Nov		Dec
Shutdown				МС		ВС	МК	МК		BT		МК			TS		МК	Shutdown
Shutdown		HF-Test		МС	нс	вс	МК	МК		вт		MK					МК	
SIS 18 upgra	de inkl. per	iodisch e Dr	y Runs		MC	вс	МК	МК		вт		MK					МК	
Periodische	Dry Runs (3-4Tage am	Stück)		MC	вс	МК	МК		вт		MK					МК	
Periodische Dry Runs (3-4Tage am Stück)					МС			вс		MK					МК			
Periodischer Teststrahlbetrieb local (2x4 Wochen am				Stüd	k)		MC		BC									

Einschränkungen für Experimentbetrieb
kein e
im Langpulsbetrieb nur A3 Energie
für 2-3 Monate max. 2 Experimente gleichzeitig
kein e
nur Speicherbetrieb mit interem Target
kein Experimentbetrieb möglich

MC	Machine Checkout = Trockeninbetriebnahme incl. Kontroll system-/Betriebssoftware Inbetriebnahme
BC	Beam Commissioning = Inbetriebnahme mit Strahl / Inbetriebnahme Strahlwege (Primärstrahl) mit Pilot strahl, timing System etc.
MK	flex. MK-Beamtime (Maschinenexperimente, Maschinenentwicklung, Geräteinbetriebnahmen, Operateursausbildung, FAIR-Detektorentwicklung, Qualifizierung+Referenzmessungen)
вт	Beamtime = Strahlzeit für PAC-Vergabe vorgesehen
TS	Flexible technische Strahlunterbrechung für Reparaturen, Softwareupdates usw. (als Block oder verteilt)
HC	HF-Kon ditionierung


First kick-off! recurring workshop theme, summary, next steps by D. Severin, U. Weinrich et al. at the end



Yes, we can!

2015-Q3: Spezifikation – OK? → GF Bericht?

2016-Q2: Meilenstein GSI Beschluss & Vorfinanzierung ??

2016-Q2/3: detaillierte Kostenabschätzung & Machbarkeitsstudie

2016-Q3/4: Bau-Vorplanung?

2017-Q1: Meilenstein Finanzierung (Vorbedingung Z-Bau)

2017-Q1: UNILAC/SIS18/ESR Migrationsstrategie (digitalisierung analoge Signale)

^{*} HKR Inbetriebnahme == Arbeiten zur Bezugsfertigkeit (Einbau Konsolen, etc.)