Correcting the beam optics: Orbit Response Matrix analysis for the FAIR storage rings

Oleksandr Kovalenko

Introduction

- What is Orbit Response Matrix (ORM) analysis
- Why do we need it
- How was it implemented
- Application for FAIR storage rings.
 Results and observations

Why we need ORM analysis

- Real magnetic lattice has errors in comparison to the model:
 - Magnet rolls
 - Magnet misalignments
 - Wrong quadrupole settings
 - Calibration errors in dipole correctors and Beam Position Monitors
- When not corrected it causes:
 - Breaking the lattice periodicity
 - Increasing the harmful effects of the nonlinear resonances
 - Reducing the beam lifetime
- ORM analysis: search for the errors locations and values. Restore the optics.

ORM analysis. Response

Orbit Response Matrix

O. Kovalenko

Orbit Response Matrix Analysis

Tools

- CERN MAD-X accelerator code
 - Twiss parameters computation
 - Beam orbit computation
 - Nonlinear beam dynamics

- Python programming language + PyQt + linear algebra libraries
 - General algorithm
 - Testing
 - Graphical User Interface
 - Lattice parser
 - Plotting
 - Singular Value Decomposition

Iteration process

- ► *V* quadrupole gradients vector.
- R = f(V) orbit response vector
- $R(V) \approx R(V_0) + R'(V_0)(V V_0)$

$$\mathbf{R}'(\mathbf{V}_0) = \mathbf{J} = \begin{bmatrix} \frac{\partial R_1}{\partial V_1} & \cdots & \frac{\partial R_1}{\partial V_k} \\ \vdots & \ddots & \vdots \\ \frac{\partial R_{mn}}{\partial V_1} & \cdots & \frac{\partial R_{mn}}{\partial V_k} \end{bmatrix}$$
$$\mathbf{V} = \mathbf{V}_0 + \mathbf{J}^{-1} \times [\mathbf{R}(\mathbf{V}) - \mathbf{R}(\mathbf{V}_0)]$$

Cycle

- 1. V_0 first guess for the gradients is known from design
- 2. $R(V_0)$ model response vector computed with MADX
- 3. R(V) observed response vector found by varying correctors
- 4. *J* Jacobian computed by varying gradients
- 5. J^{-1} pseudoinverse Jacobian calculated via SVD
- 6. *V* new quadrupole gradients
- 7. $V_0 = V$. Back to the first step

Program

- Lattice statistics
- BPM readout errors on/off
- Coupling on/off
- Search for the nonlinear errors (e.g. in sextupole gradients).

Results

CR storage ring

Machine lattice

Lattice	
Length	221 m
BPMs	18
Correctors, hor/ver	29/21
Quadrupole families	11

Orbit Response Matrix minimization in the CR

- ±5% uniform quadrupole gradient errors
- Perfect BPMs

ORM analysis. Orbit fit. CR

- 50 dipole correctors. Random quadrupole gradient errors in the range ±5%.
- The distortion of the orbit before the fit is up to 3 mm.
- Three iterations, about one minute of computation time
- All the errors of the quadrupole gradients were found almost exactly!
- The rms difference between the model and the measured orbit (green cirlces) after the fit is less than 1 μm.

HESR storage ring

Machine lattice QD S OF κ Lattice 250 20 beta-x Dx **Optical functions** 575 m beta-y Length 200 15 **BPMs** 64 Correctors, Beta-x, Beta-y [m] 2 01 Dispersion Dx [m] 26/26 150 hor/ver Quadrupole 12 100 families 50 0 -5 500 200 300 100 400 path length [m]

Fitting the orbit. HESR

Beta function fit. HESR

- Beta function: focusing, beam transverse size
- Before fitting > 70% (in the target section) discrepancy between model and real beta function
 - After ORM fitting: < 0.03% rms deviation of beta-function

Observations

Sensitivity. BPM readout errors.

− uniformly distributed BPM readout error in the range ±1 mm. After 3-4 iterations the ORM code converged with χ^2 = 0.99 for the CR and χ^2 = 0.97 for the HESR. The quadrupole gradients were found with an rms error ≈0.5% (BPM noise level).

Singal-to-noise ratio. Use the maximum possible corrector kicks.

- CR: the orbit offsets at BPMs were limited by the maximum strength of the dipole correctors.
- HESR: the limiting factor was the magnet aperture (full aperture in most of the magnets is only 89 mm)
- This approach might however fail when there are strong nonlinearities in the BPMs leading to large readout errors for large orbits offsets (at the edges of BPMs).
- **Data for the response matrix**. Use any type of data you can obtain.
 - **Dispersion**: varying frequency in the RF accelerating cavity, measure beam offsets.
 - Phase advances
 - **Tunes** etc.

Conclusions

- Response matrix analysis is a powerful technique to track down the errors in the lattice.
- Can be used during beam commissioning as well as during routine machine operation
- Type of magnetic elements, the errors of which can be corrected:
 - normal and skew quadrupole gradients
 - calibration factors of BPMs and correctors
 - sextupole gradients
- Successful proof of concept for CR and HESR FAIR storage rings. Faulty optics was completely restored.

Next steps

- Applying the ORM analysis for SIS100
- Test of the ORM analysis for the existing machines
 - CRYRING (GSI), COSY (FZ Jülich), CSR (Lanzhou)
- ORM analysis into Java