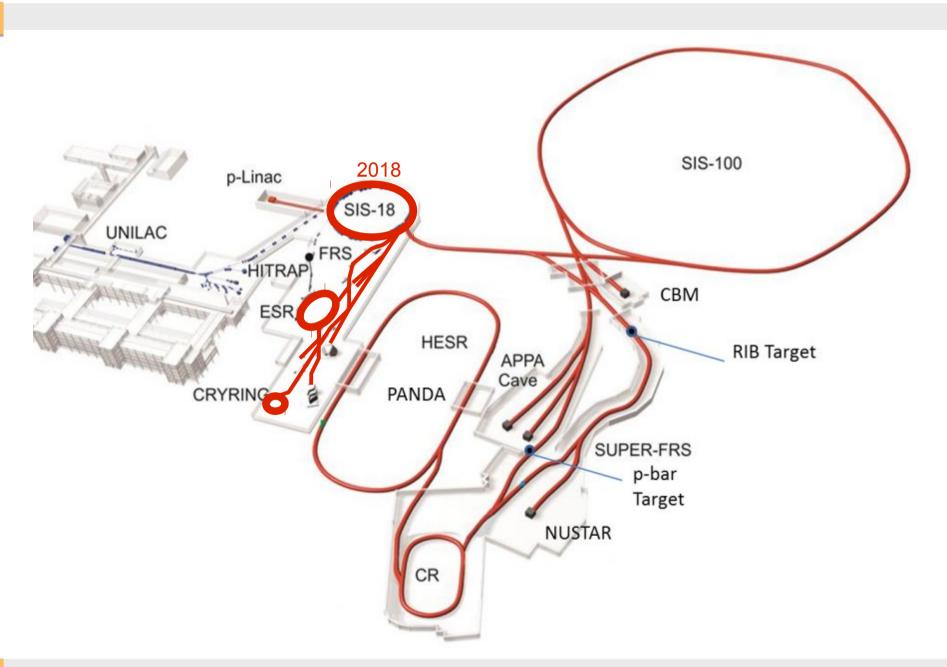
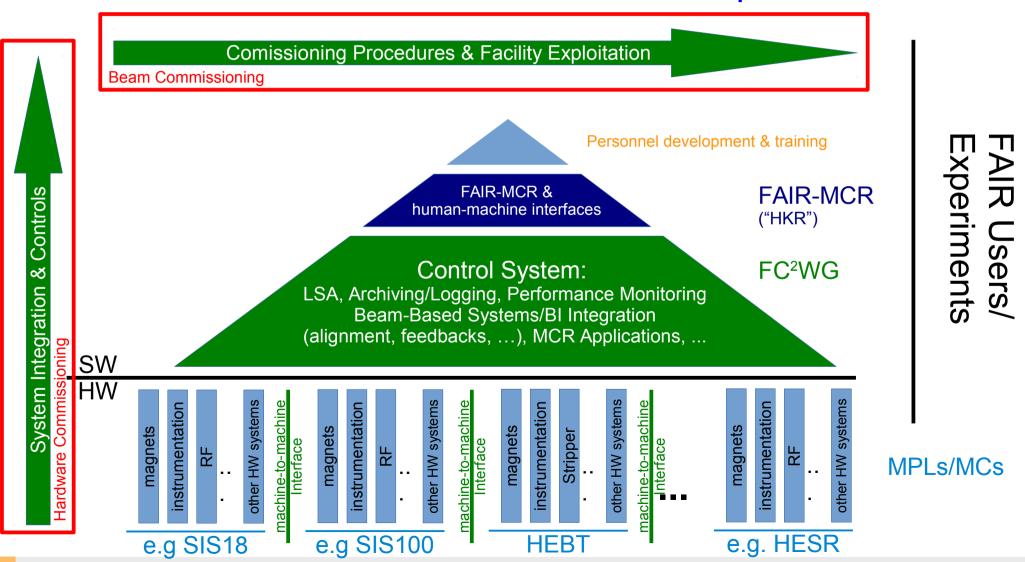

FAIR (Re-)Commissioning (in 2018) Strategy & Concepts - Follow-up -

Ralph J. Steinhagen

FAIR ... a FAIR amount of work ahead



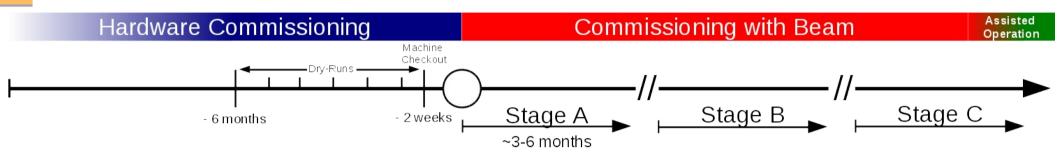
FAIR ... a FAIR amount of work ahead



An accelerator is more than the sum of its parts:

- Develop a (initial/re-)commissioning and operation strategy:
 - MoU between various stake-holders (AP, BI, CO, RF, ...)
 - define when, where and how the individual accelerator systems should fit in
 - Identify and define missing procedures, equipment and tools, e.g.:
 - define, check the need or priority of applications vs. 'use cases'
 - define, check integration and interface between specific equipment and CO/OP environment
 - Focus first on commonalities across then specifics within individual accelerators
 - MPLs/MCs define pace & resources of how fast to achieve the above
 - Dissemination/knowledge transfer from groups that constructed and performed the initial HW commissioning to the long-term operation
 - training of operational crews (physics, operation, tools, ...)
 - Scheduling tool for technical stops to follow-up possible issues found

^{*}Procedure aims not only at the initial first but also subsequent re-commissioning e.g. after (long) shut-downs, mode of operation changes and/or regular operation

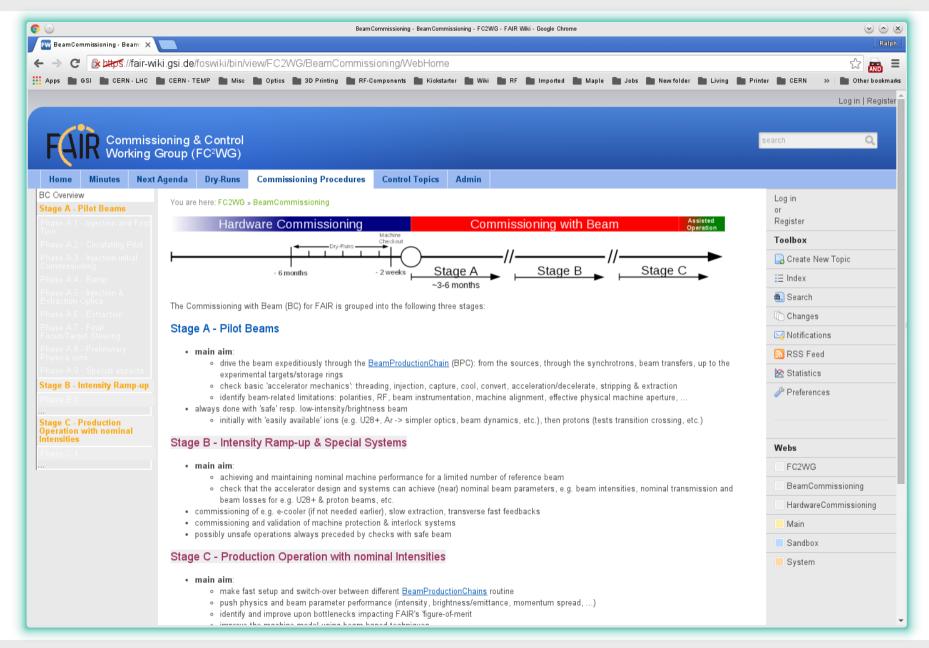

- Develop a (initial/re-)commissioning and operation strategy:
 - MoU between various stake-holders (AP, BI, CO, RF, ...)
 - define when, where and how the individual accelerator systems should fit in
 - Identify and define missing procedures, equipment and tools, e.g.:
 - define, check the need or priority of applications vs. 'use cases'
 - define, check integration and interface between specific equipment and CO/OP environment
 - Focus first on commonalities across then specifics within individual accelerators
 - MPLs/MCs define pace & resources of how fast to achieve the above
 - Dissemination/knowledge transfer from groups that constructed and performed the initial HW commissioning to the long-term operation
 - training of operational crews (physics, operation, tools, ...)
 - Scheduling tool for technical stops to follow-up possible issues found

*Procedure aims not only at the initial first but also subsequent re-commissioning e.g. after (long) shut-downs, mode of operation changes and/or regular operation

'Dry-Runs' & 'Machine Checkout':

- Focus on individual systems/devices
- Machine specific, aim at
 - generic system procedures
 (N.B. specifics part of FATs/SATs
 ↔ MPLs/equipment group responsibility)
 - specific schedule per acc. sector
- folded with:
 - acc. system availability (→ equip. groups)
 - machine schedule (MC/MPLs)
- Traceability & Repeatability

Commissioning with Beam (BC):


- Focus on tracking beam progress through the along the beam production chain (BPC)
 - injection, circulating beam, ramp, ...,
 extraction, target steering
- aim at generic procedures for all ring accelerators
 - supplemented by machine specifics where necessary (e.g. stochastic cooling, ...)
 - transfer-line considered as part of injection/extraction of previous/ following accelerator (cruicial overlap)

Example: FAIR Commissioning Procedures

https://fair-wiki.gsi.de/FC2WG/BeamCommissioning

- Split Beam Commissioning into three stages:
 - I. Pilot beams/"easily available" ions (e.g. U28+, Ar)
 - basic checks: threading, injection, capture, cool, convert, acceleration/decelerate, stripping & extraction
 - always done with 'safe' ie. low-intensity/brightness beam
 - Ions: simpler optics, beam dynamics → Protons: transition crossing

II. Intensity ramp-up & special systems

- achieving and maintaining of nominal transmission and beam losses
- commissioning of e.g. e-cooler, slow extraction, transverse fast feedbacks
- commissioning and validation of machine protection & interlock systems
- Possibly unsafe operations always preceded by checks with safe beam

III. Production operation with nominal intensities

(N.B. first time counted as 'commissioning' → later: 'regular operation')

- push physics and beam parameter performance (emittance, momentum spread, ...)
- identify and improve upon bottlenecks impacting FAIR's 'figure-of-merit
- make fast setup and switch-over between different beam production chains routine

Phase	Description
A.1	Injection and first turn: transfer lines, injection commissioning; threading, initial commissioning beam instr.
A.2	Circulating pilot: establish circulating beam, closed orbit, tunes, RF capture
A.3	injection initial commissioning: initial commissioning of beam instrumentation cont'd, beam dump
A.4	Ramp: transition crossing (protons), control of orbit, Q/Q',
A.5	Injection & Extraction optics: beta beating, dispersion, coupling, non-linear field quality, aperture
A.6	Extraction: fast extraction, slow extraction,
A.7	Final Focus/Target Steering: transfer lines, final focus, internal/external target steering,
A.8	Preliminary physics runs: "physics" with intermediate safe beam parameter (experiment detector setup etc.)
A.9	Special aspects: special machine functions, e.g. stochastic/e-cooling, transverse FB, special RF manipulation

*inspired by commissioning and SW analysis efforts for LHC:

http://lhccwg.web.cern.ch/lhccwg/overview_index.htm

http://lhccwg.web.cern.ch/lhccwg/Bibliography/background-material.htm

http://proj-lhc-software-analysis.web.cern.ch/proj-lhc-software-analysis/

http://lhc-commissioning.web.cern.ch/lhc-commissioning/machine-checkout.htm

- Organised per machine and/or group of accelerators/transfer-lines
- Tests per sub-systems, e.g.: technical services (controls network, electrical network, cooling and ventilation, access and safety systems), vacuum systems, power circuits (cryo & QPS (where applicable), powering interlocks, PC currents checked, low-level communication, ...), high-level controls (alarms, interlocks, cryo, post-mortem, archiving, equipment monitoring, remote device control, settings generation, ...), timing system, MPS, radiation monitoring, pre-injector and transfer-lines, injection equipment, beam instrumentation, RF system, beam dump & collimation, experiments, ... (list to be agreed upon)
- Within each sub-system: list of actual individual devices
 - link to system description (→ control room level documentation)
 - tracking w.r.t. machine/system availability...
 - link to generic test procedure (OP view → HW specifics done as part of FAT/SAT)
 - summary of dry-run test results (+ document repetitions if necessary, last test/'good as of')
 - ... not all test results are 'OK'/'not OK'. Need to discuss required level of detail.
 - Problems & issue tracking (→ impact on beam commissioning)!

Preliminary Ideas for Dry-Runs II/III Example: Power Circuits Checks

- Sequence, check (details need to be fleshed out):
 - supply of energy & utilities
 - low-level communication, On/Off
 - Tests with short & actual load (PC vs. circuit tests)
 - Test-ramps to $I_{min}/I_{ref}/I_{nom}$
 - Tracking performance $\rightarrow R_{actual}$, $L_{actual} \rightarrow L(I)$ calibration, I_{DCCT} calibration, ...
 - I_{earth} leakage, FFT(I_{meas}) → detects EMC issues, PC faults
 - state-machine tests (fault testing): interface to interlocks (FBAS), PC permit, ...
 - SIS100/Super-FRS: quench training, circuit-quench via QPS, fast power abort, ...
 - ...
 - availability of LSA (HWC) settings, ...
 - tests cycles
 - top-level applications, ...

- Traceability: poor-mans-solution acceptable for for small machines/few devices, e.g.
 - single Excel/OpenOffice/Wiki spread sheet for status tracking
 - detailed procedures in Wiki would do its job, how
 - Documentation of individual test results?
 - Screenshots? data blobs (files)?
 - How-to keep track of these results on the long-term? DB? EDMS? ...?
- Repeatability: how-to track tests that were done or need to be redone (e.g. after next technical stop)
- Applications:
 - HWC Tracker (overall status)?!
 - Sequencer in MCR: ~ 20 power converter OK to test by hand, but FAIR > 100!!
 - Equipment monitor (time traces, prior to availability to 'Archiving System')
 - Larger machines would benefit from automation/proper record keeping
 → what could be done with a reasonable effort for 2017 (2019)?

- Plan & coordinate dry-runs in view of SIS18 re-commissioning in 2018
 - driven by SIS18 constraints & CSCO milestone plan and availability
 - tentative schedule:
 - start 6 month before scheduled commissioning with beam, frequency ramp-up
 - Dry-Runs: 1-2 days every month, follow-up of issues, increase frequency if necessary
 - Last two weeks 'Machine-Checkout' every morning (afternoon to follow-up bugs)
 - Availability of systems determine what will be tested during each dry-run
- Start developing beam commissioning procedure → tentative review by Q3/Q4-2016
 - FAIR commissioning & operation success depends on readiness of systems <u>and</u> people
 - Responsibility shared collectively → not a 'one man show' → active participation & volunteers needed → small activity groups, documentation on wiki
 - feel free to propose further participants you consider pertinent or whom it may concern
 - requirement for dissemination and impact on real-world FAIR operation

Comments? Questions?

FAIR Challenges & Constraints ... SIS18 Operation Experience & Efficiency I/II

Statistik	Betrieb	✓ Beg	Jinn 01.01.2014	22:	00	Ende	31
Status		Ereignis	Ges	amt	Minuten	Prozent	
SAT		Strahl auf Target (inkl. Na	choptimieren) 12000.	35 h	720021	50.18	
NO		Nachoptimieren	92.	63 h	5558	0.39	
STDBY		Standby	6782.	43 h	406946	28.36	
UNTER	BR		5039.	55 h	302373	21.07	1
	EINST		2206.	85 h	132411	9.23	
	QW		520.	52 h	31231	2.18	
	AUSF		2312.	18 h	138731	9.67	
GESAM	Т		23914.	97 h	1434898	100.00	

¹possibly strong assumption that new machines can be operated with the same routine, ease and efficiency as the present GSI infrastructure, ... ²complex beam chains (e.g. HESR) with long beam setup times are typically run longer/more static than shorter (SIS18 experiments)

Statistik B	etrieb	∨ Beginn 01.01.2	2014 22:	00	Ende	
Status		Ereignis	Gesamt	Minuten	Prozent	
SAT		Strahl auf Target (inkl. Nachoptimieren)	12000.35 h	720021	50.18	
NO		Nachoptimieren	92.63 h	5558	0.39	
STDBY		Standby	6782.43 h	406946	28.36	
UNTERBE	}		5039.55 h	302373	21.07	
E	INST		2206.85 h	132411	9.23	
(QW .		520.52 h	31231	2.18	
P	USF		2312.18 h	138731	9.67	
GESAMT			23914.97 h	1434898	100.00	

- possibly pessimistic/simplistic^{1,2} estimate, control room experience:
 - presently: '~ 1 shift UNILAC setup + 1 shift SIS18+TL setup' ↔ 1-2 weeks of experiments
- 2014: Beam-on-Target (BoT) figure of merit (FoM) of ~70%
 - sufficient for present mode of operation (~20% HW failures, ~13% setup)
 - however: high losses/activation & FoM does not scale for FAIR

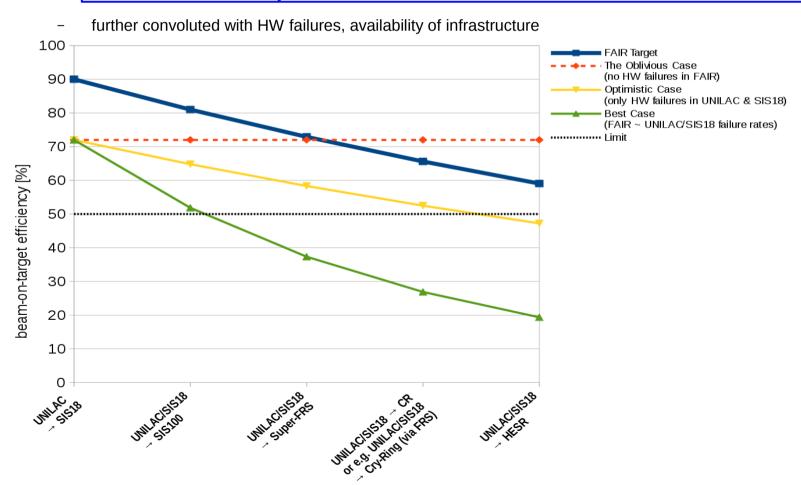
¹possibly strong assumption that new machines can be operated with the same routine, ease and efficiency as the present GSI infrastructure, ... ²complex beam chains (e.g. HESR) with long beam setup times are typically run longer/more static than shorter (SIS18 experiments)

FAIR Challenges & Constraints ... SIS18 Operation Experience & Efficiency II/II

• FAIR-BoT (efficiency ε_{FAIR}):

$$\varepsilon_{\text{FAIR}} := \prod_{i}^{n_{\text{machines}}} \varepsilon_{i} = \varepsilon_{\text{ESR/SIS18}} \cdot \varepsilon_{\text{SIS100}} \cdot \varepsilon_{\text{SuperFRS}} \cdot \varepsilon_{\text{CR}} \cdot \varepsilon_{\text{HESR}} \cdot \dots$$

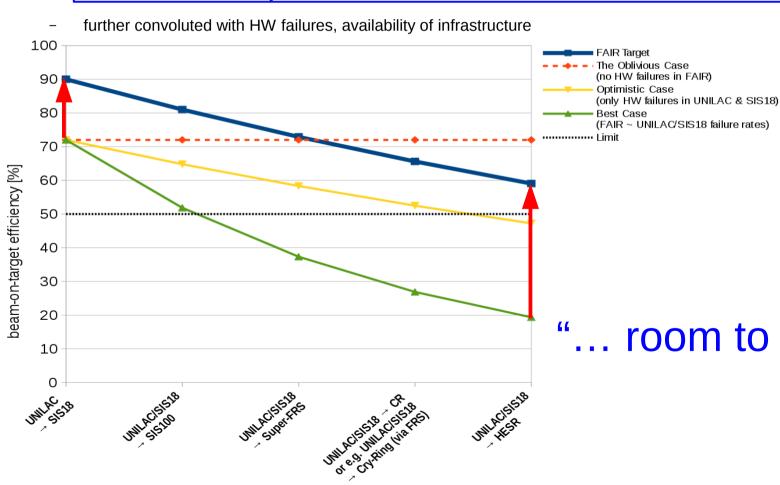
further convoluted with HW failures, availability of infrastructure



FAIR Challenges & Constraints ... SIS18 Operation Experience & Efficiency II/II

• FAIR-BoT (efficiency ε_{FAIR}):

$$\epsilon_{\text{FAIR}} := \prod_{i}^{n_{\text{machines}}} \epsilon_{i} = \epsilon_{\text{ESR/SIS18}} \cdot \epsilon_{\text{SIS100}} \cdot \epsilon_{\text{SuperFRS}} \cdot \epsilon_{\text{CR}} \cdot \epsilon_{\text{HESR}} \cdot \dots$$



FAIR Challenges & Constraints ... SIS18 Operation Experience & Efficiency II/II

FAIR-BoT (efficiency ε_{FAIR}):

$$\varepsilon_{\text{FAIR}} := \prod_{i}^{n_{\text{machines}}} \varepsilon_{i} = \varepsilon_{\text{ESR/SIS18}} \cdot \varepsilon_{\text{SIS100}} \cdot \varepsilon_{\text{SuperFRS}} \cdot \varepsilon_{\text{CR}} \cdot \varepsilon_{\text{HESR}} \cdot \dots$$

... room to improve!"