FAIR Accelerator & Beam Modes Ralph J. Steinhagen, Ralph Bär et al.

Quality Management	Document Type:	Document Number: F-TC-C-07	Date: 02.10.2015	
F(() R @ E5 55 🕯	Technical Concept	Template Number:	Page 1 of 15	

Document Title:	Accelerator and Beam Modes
Description:	Technical Concept for definition and integration of Accelerator Modes and Beam Modes in the accelerator control system
Division/Organization:	CSCO, PBSP
Field of application:	Project FAIR@GSI, existing GSI accelerator facility
Version	V 0.2

Abstract

This technical concept proposes two fundamental modes: the 'accelerator mode' covering rule sets and operational sequence outside of beam operation and that are defined per accelerator or beamline section (e.g. shutdown, setup, physics run, etc.); and the 'beam mode' covering rule sets during beam operation and that are defined per accelerator or beam-line section <u>and</u> Beam-Production-Chain (e.g. no beam, pilot beam, stable beam, etc.).

The purpose of these modes is to communicate the intended accelerator operation, and to condition the various control sub-system responses (e.g. archiving, interlock and fast-beam-abort systems, management of critical settings, etc.). The accelerator control system will distribute this information to the accelerator devices, experiments and wider FAIR community.

Prepared by:	Checked by:	Approved by MPLs + Mks:				
R. Steinhagen	S. Jülicher (CO)	F. Hagenbuck (HEBT)				
R. Bär	I. Lehmann	M. Winkler (Super-FRS)				
	C. Omet (SIS-100 MP)	O. Dolinskyy (CR)				
	D. Ondreka (System Planning)	R. Brodhage (p-Linac)				
	A. Reiter (BI)	P. Spiller (SIS-100) K. Knie (p-bar Separator) H. Reich-Sprenger (Common Systems) H. Kollmus (Cryogenics)				
	P. Schütt (Operation)					
	D. Severin					
	b. octain					
		R. Bär (Controls)				
		R. Steinhagen(FAIR Comm. & Control)				
		S. Reimann (Operation)				
		L. Dahl (General Systems)				
		R. Hollinger (Ionen Quellen)				
		H. Vorman (Unilac)				
		J. Stadlmann (sis-18)				
		C. Kleffner (HEST)				
		M. Steck (ESR)				
		F. Herfurth (CRYRING/ HITRAP)				

F-TC-C-07e_Accelerator_and_Beam_Modes_v0.2.odt

Hardcopy will not be controlled

FAR Accelerator and Beam Modes

- Purpose:
 - A) Communication of intended accelerator operation to experiments, FAIR and wider community
 - what to expect and when
 - B) Conditioning of control sub-system responses
 - e.g. logging, interlocks, management of critical settings (RBAC), machine sequencer, access system, ...
- \rightarrow associated rules of what is allowed, when, where etc. some examples:
 - limit parameter changes during data taking aka. 'Stable Beams'
 - no beam data being logged during 'shut-down' period
 - no high-intensity beam injected into an 'empty' machine
 - block certain operation during un-safe mode of operation, e.g.
 - moving in beam screens during production runs
 - settings change that could affect efficiency/safety of machine operation (e.g. slowextraction)
 - uncontrolled remote tests on an operational devices during beam operation

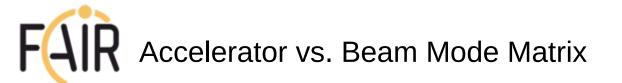
FAR Glossary: 'Mode' & 'Actual States'

Mode:

- deliberate user-driven state used to precondition the control system behaviour and responses independent of the actual accelerator or beam state → 'reference' or 'desired target' of operation (long-term)
 - formal agreement between accelerator operations and experimental users w.r.t. what to expect
- Tracked by operator (initially) and semi-automated sequencer to follow normal operational sequence
 - Example 1: 'Shut-Down' \rightarrow 'Cool-Down' \rightarrow 'Machine Check-Out'
 - Example 2: ... \rightarrow 'no beam' \rightarrow 'pilot beam' \rightarrow 'intensity ramp-up' \rightarrow 'adjust' \rightarrow 'stable beams/production for physics' \rightarrow ...
 - need to limit number of mutually exclusive and concise modes ↔ overhead of settings generation and their checks
- no real-time requirements

Actual State:

- measured current state of the accelerator/beam (short-term)
 - perviates accelerator & beam mode definition & equally used as a ad-hoc/post condition
 - Examples: Beam-Presence-Flag (BPF), Setup-Beam-Flag (SBF), Injection & Extraction Permit (MP interlock states)
- real-time requirements
- Examples:
 - 'No Beam' beam mode declares intend (as an agreement) that there will be no beam in the machine
 - 'Beam Presence Flag' is measured actual state whether there is (/was) beam in the machine or not
 - N.B. obviously a 'NO BEAM' beam mode & 'BPF=true' should lead to an interlock
- Shouldn't mix 'modes' with 'actual states' to prevent circular dependencies, priority/causality inversions


• Main modes:

1)Accelerator (Machine) Modes

- covering rule sets outside of beam operation
- defined per accelerator/transfer-line segment

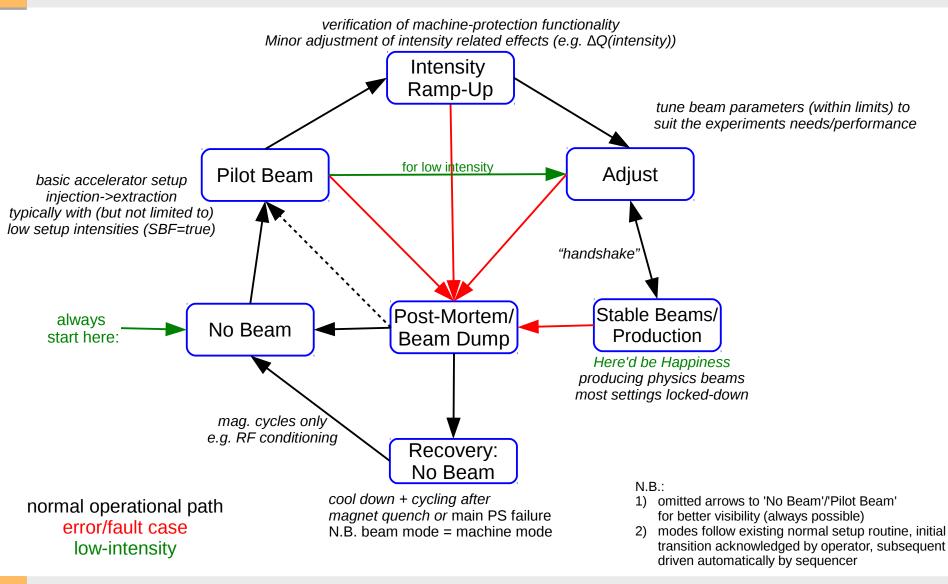
2)Beam Modes

- covering rule sets during beam operation
- defined per accelerator/transfer-line segment and beam-production-chain
- Main Actual States:
 - Beam Presence Flag (BPF)
 - indicates that settings have been validated with Setup- (Pilot-) or Physics-Beam
 - prevents high-intensity injections into an 'empty' machine with new untested magnetic settings or modified machine conditions
 - Setup Beam Flag (SBF)
 - Indicates beam used to setup beam production chain (typ. low-intensity)
 - SBF provides flexibility of masking interlocks during setup periods
 - rationale: interlocks targeted for high-intensity operation may impact setup and availability with low-intensities
 - defined per accelerator or transfer-line segment (where necessary)

		Accelerator Mode									
		Shut-down	Shut-down Cool-down Bake-Out			Beam Operation					
				Bake-Out	Warm-Up	Machine-Checkout	Access	Machine Test	Beam Setup	Physics	Machine Development
	No Beam	x	х	х	х	х	х	х	х	х	x
	Pilot Beam								x	x	x
Beam Mode	Intensity Ramp-Up								x	х	x
	Adjust								x	х	x
sear	Stable Beams									х	
	Post-Mortem								х	х	x
	Recovery								x	x	x

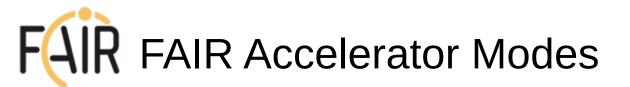

N.B. defined per accelerator/transfer line segment

N.B. defined per accelerator/transfer line segment & beam production chain


concatenation of <accelerator mode>:<beam mode> e.g. 'Shut-down:No Beam', 'Physics:Pilot Beam'

GS Helmholtzzentrum für Schwerionenforschung GmbH

Ralph J. Steinhagen, r.steinhagen@gsi.de, 2015-06-17


GS Helmholtzzentrum für Schwerionenforschung GmbH

Follows annual life-cycle of accelerator facility

- Operation without Beam:
 - SHUTDOWN
 - · could imply possibility of open/controlled access or no powering
 - COOLDOWN (SIS100, SFRS)
 - typ. 2-3 weeks, limited/no access
 - need to distinguish between a 'warm' and cold' shutdown?
 - BAKE-OUT (SIS18, HEBT, ...) similar to cool-down
 - WARM-UP (SIS100, SFRS)
 - RECOVERY (SIS100, SFRS)
 - after quench, partial vacuum loss, typ. few hours day
 - · includes e.g. periodic magnet CYCLING to stabilise hysteresis
 - MACHINE-CHECKOUT
 - · operations tests without beam in view of beam operation
 - (e.g. power converter calibration, magnet patrol, etc.)
 - · done once after a long shutdown, typ. few weeks before beam operation
 - ACCESS (during beam operation periods)
 - controlled access for specific tasks only (signature by MCs & OP)
- Operation with Beam:
 - BEAM SETUP or MACHINE SETUP
 - focus on initial/re-commissioning, machine setup after long shut-down + OP training
 - PHYSICS
 - MACHINE DEVELOPMENT
 - focus on accelerator/beam physics aspects
- MACHINE TEST (during beam operation periods)
 - controls, RF, new front-end, ... tests w/o beam + OP training
 - Ad-hoc during beam operation but not 'Physics' nor 'MD'

describe main aim of machine operation +

info & Accounting type modes

operation without beam (part of shut-down coordination) FAIR Beam Modes

- Follows life-cycle of beam setup and production also not new, de-facto how
 - NO BEAM
 - prevent/stop beam being injected by design (↔ mode)
 - PILOT BEAM alternate: Beam Setup?
 - Establishing main machine parameters: injection steering, RF capture, ramp, orbit, Q/Q', optics checks, extraction
 - typically done with low setup-intensities
 - INTENSITY RAMP-UP should we differentiate stages? e.g.: INT. RAMP-UP #1, INT. RAMP-UP #2, ... ?
 - beam parameter tuning and checks related to increasing intensities (e.g. slow extraction, space-charge, etc.)
 - check of interlocks & machine protection functionalities (limited user group only ↔ special RBAC role for e.g. interlock settings)
 - ADJUST
 - · Perform actions/change minor beam parameters ("minor" needs to be defined)
 - tune beam parameters (within limits) to suit the experiments needs/performance
 - STABLE BEAMS alternate: PRODUCTION (for physics)
 - · main intend is to deliver stable beam to experiments
 - tbd: very limited machine tuning
 - BEAM-DUMP or POST-MORTEM
 - response to quench, MP action, or other action that needs to be analysed before one can continue with normal operation
 - RECOVERY
 - · recovering from severe post-mortem, essentially includes 'CYCLING'
 - For storage rings (essentially only ESR & HESR)
 - Do we need INJECTION/ACCUMULATION & RAMP modes?

Beam Modes are not new! already practise in normal operation \rightarrow plan to make CS also aware of them \rightarrow allows to define rules, statistics, ...

