

FAIR Challenges Facility for Antiproton and Ion Research

Ralph J. Steinhagen

EuCARD², Beam Dynamics meets Diagnostics, 4-6 November 2015 Convitto della Calza, Florence, Italy

FAR Eacility for Anti-proton and Ion Research Satellite View

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Ralph J. Steinhagen, r.steinhagen@gsi.de, 2015-11-04

Nuclear Physics & Physics with Hadrons

- Nuclear Reaction from lowest to highest Energies
- Super-heavy Elements
- **Compressed Baryonic Matter**
- Anti-matter Research
 - new: PANDA (QCD) •

Atomic Physics

- Atomic Interactions
- Precision Spectroscopy of highly charged Ions

Bio-Physics and Bio-Medical Applications

- Radiobiological effects of ions
- Cancer therapy with ion-beams

Plasma Physics

- Hot dense Plasmas
- Ion-Plasma Interactions

Material Science

- Ion-Condensed-Matter Interactions
- Nano-structures using ion-beams

Accelerator Technology

- Linear accelerators
- Synchrotrons and Storage Rings

FAR Modularised Start Version 2020 (MSV0-3)

(for reference: 3x more than SPS & LHC, ¼ of Hoover Dam) Substructure: 1350 pillars, up to 65 m deep (finished)

FAR High Energy Beam Transfer (HEBT) – Civil Construction & Integration

The 'High Five' (Dallas) $2002 \rightarrow 2005$

FAIR Primary & Secondary Rare Isotope Beams (RIBs)

FAIR FAIR Ring Accelerator Parameters

	SIS18	SIS100	CR	HESR
Circumference [m]	216	1083	215	575
Max. beam magnetic rigidity [Tm]	18	100	13	50
Injection energy of protons or anti protons [GeV]	0.07	4	3	3
Final energy of protons or antiprotons [GeV]	4	29	3	14
Injection energy of heavy ions [GeV/u]	0.0114	0.2	0.74	0.74
Final energy of heavy ions U(28+) [GeV/u]	0.2	2.7		
Final energy of heavy ions U(/73+/92+) [GeV/u]	1	11	0.74 (92+)	0.2-4.9 (92+)
Max. beam intensity for protons or antiprotons /cycle	5*10 ¹²	2*10 ¹³	10 ⁸	10 ¹⁰
Max. beam intensity of ²³⁸ U-ions /cycle	1.5*10 ¹¹	5*10 ¹¹	10 ⁸	10 ⁸
Required static vacuum pressure [mbar]	< 10 ⁻¹¹	<5*10 ⁻¹²	<10 ⁻⁹	<10 ⁻⁹

Main FAIR challenges:

- Control of highest proton and (unprecedented) uranium ion intensities
- Excellent XHV vacuum conditions

FAR SIS18 Dynamic Vacuum Control SIS-18 Hardware Upgrades

Intense primary heavy-ion beams: RIB production (NuSTAR) and plasma physics

•	SIS-18 upgrades for SIS-100 injection:
---	--

- new injection system (larger aperture)
- NEG coating of vacuum pipe
- Combined pumping/collimation ports behind dipoles
- reduction of multi-turn injection loss (ongoing)
- fast ramping with 10 T/s (ongoing)
- dual RF system (ongoing)

	SIS-18 (today/required)	SIS-100		
Reference primary ion	U ²⁸⁺	U ²⁸⁺		
Reference energy	200 MeV/u	1.5 GeV/u		
lons per cycle	3E10 / 1.5E11	5E11		
cycle rate (Hz)	1/2.7	0.5		
primarily limited by LL ion source				

primarily limited by U-ion source

P. Hülsmann, P. Spiller, O. Boine-Frankenheim et al., IPAC 2010

FAR SIS100 Dynamic Vacuum Control Machine Layout ↔ Lattice Design

- U²⁹⁺ loss positions in SIS100 are peaked (by design) at the cryo-aborbers (collimators)
- Doublet focusing structure:
 - Dipoles act as a charge state separator
 - 'de-focusing' →'focusing' quadrupole order
 - over-focussing assures beam reaches cryo-absorber
- Dyn. vacuum requires huge pumping speed:
 - cryogenic vacuum chambers
 - N.B. principal reason why SIS100 is cold
 → super-conducting dipole/quad. Magnets
 - NEG-coating of most warm vacuum chambers

May have to accept minimal amount of losses (primary ion-gas interactions, not intercepted by vacuum system or absorbers) → need instrumentation to detect, tell-the-difference and to mitigate the other loss-mechanisms

SIS18 Multi-Turn Injection (H-Phase-Space Painting) P. Spiller, Y. El-Hayek, U. Blell et al., IPAC'12, 2012

FAIR SIS100 Ion and Proton Lattices

	Ion Lattice			Protor	n Lattice
	Q _h /Q _v	18.88 / 18.80		Q _h /Q _v	21.78 / 17.40
•	Yt	15.4		Yt	45.5
	D _{max} [m]	1.8		D _{max} [m]	3.0
	ε _h /ε _v [mm mrad]	25 / 10		$\epsilon_{\rm h}/\epsilon_{\rm v}$ [mm mrad]	4 / 2
	Energy [GeV/u]	0.4 – 2.7		Energy [GeV/u]	29.0
<u>V~~</u>					
	p Chaillea Chaillea Chaille				
	optics uncertainties → uncertainties on collimation, MTI, slow-extraction → requires excellent control of the machine optics (N.B. gradual proton optics changes from injection → extraction over ~ 200 ms)				

Symmetric doublet lattice (14 x DF)

- Symmetry broken to shift γ_t (6 x DF₁, 8 x DF₂)
- Vertical plane only weakly affected

D. Ondreka, S. Sorge, V. Kornilov

Slow Extraction from SIS-100

Intense Heavy-Ion Beams for NuSTAR & CBM

GSI Helmholtzzentrum für Schwerionenforschung GmbH Ralph J. Steinhagen, r.steinhagen@gsi.de, 2015-11-04

FAR SIS-100 Dipole Magnets Field Quality and Tracking Studies

GSI Helmholtzzentrum für Schwerionenforschung GmbH Ralph J. Steinhagen, r.steinhagen@gsi.de, 2015-11-04

- Activation: loss of 'hands-on-maintenance' \rightarrow '1 W/m criteria'¹ 1.
 - important primarily for localised losses e.g. during slow extraction
- 2. Ion-induced desorption: increase of vacuum pressure
 - primary reason for SIS100 being a cryogenic machine \rightarrow beam loss contro/particle stability _
 - distributed combined collimation/pumping system for 'stripping' losses in SIS-100
- Machine Protection: ion-induced damage $\rightarrow \sim 10^{10}$ of ²³⁸U considered to be "safe" 3. (assumes typically beam spot sizes and energies in SIS100/HEBT)
 - energetic ions cause higher damage than protons

Beam	Loss criteria (injection)	Loss criteria (extraction)	Tolerable losses (injection)	Tolerable losses (extraction)
Protons	1 W/m	1 W/m	10 %	5 %
⁴⁰ Ar ¹⁸⁺ ions	2 W/m	1 W/m	30 %	6 %
²³⁸ U ⁹²⁺ ions	4 W/m	2 W/m	20 %	10 %

Caution: '1 W/m' is only indicative! existing operation, shielding and radiation permit limits instantaneous proton losses to <3% @ 29 GeV and nominal intensities! \rightarrow should aim to be significantly below that limit (ALARA)

*assumes 10s proton cycle & activation limit only

*for comparison: CERN-PS: 4-8% losses achieved (data courtesy R. Steerenberg, 19th March 2012)

¹ N.V. Mokhov and W. Chou, The 7th ICFA Mini-workshop on High Intensity High Brightness Hadron Beams, USA, 1999.

GSI Helmholtzzentrum für Schwerionenforschung GmbH Ralph J. Steinhagen, r.steinhagen@gsi.de, 2015-11-04 *

FAR Sensitivity to Beam Loss Energy Deposition in Coils vs. IC-type BLM Signals

Quench prevention analysis: (S. Damjanovic)

- sufficient BLM sensitivity:
 - '5.10⁴ ions/s' vs. '5.10¹¹ ions/cycle'
 - Most-likely loss locations: Primary (Halo-) collimator, secondary collimator, cryoabsorber, warm magnets (extraction)

cannot assume loss-less lon operation: primary ion-gas interactions, slow-extraction, ...
A) plan to use relative BLM signal to freeze operation around best-case loss reference
B) attempt to define 'acceptable losses'

FAR Beam Transmission Optimisation & ALARA Activation Minimisation

Gretchen Frage: "What are of 'As-Low-As-Reasonably-Achievable' losses" (in a less precisely known high-intensity ion operation territory) "when you have excluded the obvious, whatever remains, however improbable, must be the truth." → exhaust reasonable operational practices of controlling parameter known to induce particle loss Low-intensity beams: High-intensity beams: A. Extraction/Injection Matching All on the left, with tighter limits, plus first-turn trajectory steering (BPMs), E. Optics Correction energy matching (B) **Beam Instrumentation & Diagnostics Tools** -up optimisation) coarse collimation (will be vital for day-to-day FAIR operation! arises/restores before propagating terms) - not mere 'nice to have' features - bunch-length to buc cks) **B.** Closed-Orbit Cycle-to-Cycle Feedback (BPMs) F. Detailed Collimation (e.g. 2-stage for protons) aperture optimisation (coarse, circulating beam) see Ivan Strasik's talk @ HIC4FAIR'2015 C. Tune & Chromaticity Correction (BPMS, BBQ) G. Quantitative slow-extraction optimisation • optimises space charge, ΔQ spread, dyn. aperture, beam stability • eval. 'Hardt condition', step-width measurement, ... D. Emittance (blow-up) Monitoring (IPMs, FCTs) Η. ... frequent cause for loss changes \rightarrow 'acceptable losses' := losses remaining after having performed above steps

GSI Helmholtzzentrum für Schwerionenforschung GmbH Ralph J. Steinhagen, r.steinhagen@gsi.de, 2015-11-04

FAR Modularised Start Version 2020 (MSV0-3)

Achromatic in velocity, but dispersive in mass and charge

Degrader angle and thickness steers optics for the second spectrometer part

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Ralph J. Steinhagen, r.steinhagen@gsi.de, 2015-11-04

FAR Super-Fragment-Separator (Super-FRS) Rare Isotope Beam Production (RIB)

GSI Helmholtzzentrum für Schwerionenforschung GmbH Ralph J. Steinhagen, r.steinhagen@gsi.de, 2015-11-04

FAR CR, HESR, ESR & Cry Storage Rings

SIS 100 RF: BCMS Bunch Compression & Merging Scheme

Single bunch formation 1.5 GeV/u U²⁸⁺ rf acceleration sections (60 m) 8 bunches SIS-18 bunch compressor rf compressor loaded with 20 MA cores section (40 m) **SIS 100** L=1084 m 'bunch merging' barrier bucket rf pre-compresso pre-compression #cavities Voltage [kV] Frequency [MHz] Concept rotation Compression 16 600 0.4-0.5 (h=2) MA (low duty cycle) a burner her to ALCO BYL THE extraction Particles/bunch bunch length **Final** 1.5 GeV/u U²⁸⁺ bunch 5 x 10¹¹ 60 ns ∆Q_s≈ -0.6 parameters: 29 GeV protons 2 x 10¹³ 25 ns

GSI Helmholtzzentrum für Schwerionenforschung GmbH Ralph J. St

FAIR Storage Rings Particle-Stacking & Beam Cooling

GSI Helmholtzzentrum für Schwerionenforschung GmbH Ralph J. Steinhagen, r.steinhagen@gsi.de, 2015-11-04

FAIR Accelerator Operational Challenges Typical GSI Operation & Beam Time Schedule

- GSI facility
 - 2 + 1 accelerators (FAIR: $8 \rightarrow 11++$)
 - 20 experimental areas
- Parallel operation
 - UNILAC, SIS18, ESR independent
 - 3 different ion species
 - 5 parallel experiments
- Experiments demand high flexibility
 - Variation of beam parameters (daily)
 - energy, intensity
 - extraction type
 - number of bunches
 - Change of beam sharing (daily)
 - Switching of ion species (weekly)
 - Adjustment of schedule (monthly)

FAIR Operational Challenge:

- presently: 2 shifts for setup of 2 accelerators → FAIR target: 1-2 shift(s) for setting up 5 accelerators + tighter loss control
- Main strategy/recipe to optimise 'beam-on-target':
 - quasi-periodic cycle operation: limit major pattern changes by construction ↔ beam schedule planning (tools)
 - minimise overhead of context switches → smart tools, procedures & semi-automation, e.g. beam-based feedbacks, sequencer, ...

FAIR Challenges vs. Remedies

• SIS18

- Multi-turn injection optimisation → injection matching (BPMs: x,x',y,y', ..) & turn-by-turn IPMs
- space-charge limit & dynamic vacuum → passive absorbers, vacuum pumping capacity, beam-loss optimisation
- control of beam loss and beam parameter quality for high intensities → cycle-to-cylce Orbit-FB & Q/Q' Control
- factor of 10 for heavy ions → ion source optimisations, multi-turn, beam-stability/space-charge opt. → optics, Q/Q'

• SIS100

- Slow Extraction → K.O. excitation-based method, faster initial Q/Q' setup
- Bunch-to-Bucket Injection → extraction/injection steering and fast trans./long. intra-bunch feedbacks
- Control of beam loss and beam parameter quality for high intensities → cycle-to-cylce Orbit-FB & Q/Q' Control
- Beam loss budget: activation, dynamic vacuum, machine protection
 → intensity rampup procedures, transmission monitoring & interlocks, BLMs

• CR, HESR, ESR & Cry-Ring

- accumulation/cooling of primary/secondary beams → BCMS, short bunches → long. diagnostics & online tomography
- FAIR accelerator facility Operational Challenge
 - fast turn-over \rightarrow change of experiment about every two weeks, some run for 2-3 days only
 - presently: 2 shifts for setup of 2 accelerators FAIR target: 1-2 shift(s) for setting up 5 accelerators + tighter loss control
 - Main strategy/recipe to optimise 'beam-on-target':
 - quasi-periodic cycle operation: limit major pattern changes by construction ↔ beam schedule planning (tools)
 - minimise overhead of context switches → smart tools, procedures & semi-automation, e.g. beam-based feedbacks, sequencer, ...
 - N.B. also liberates operators from tedious task to focus on error (pre-)diagnosis and facility optimisations

Yes, we can!

... backed by beam instrumentation, diagnostics and procedures for tuning FAIR ...