

SIS100: Main Parameters – a versatile machine

	Item	RIB (U ²⁸⁺)	CBM (U ⁹²⁺)	Protons for pbar
5	Magnetic rigidity @ extr. $B \cdot \rho$ [Tm]	2764 100	100	100
	Energy range @ extr. E [GeV/u]	0.4 1.5 2.7	10.7	28.8
	Max. repetition rate f_{rep} [Hz]	0.35 (slow) 0.50 (fast)	0.09	0.4
	Relativistic γ	3.9	12.4	31.9
	Transition energy γ_{tr}	15.5	14.3	18.3 (45*)
	Tune $v_{x,y}$	17.3/17.8 (slow) 18.9/18.8 (fast)	17.3/17.8	10.4/10.3 (21.8/17.7*)
	Number of ions per cycle N	5 x 10 ¹¹	1.5 x 10 ¹⁰	2 x 10 ¹³
	Max. number of ions per second [1/s]	1.8 x 10 ¹¹ (slow) 2.5 x 10 ¹¹ (fast)	1.5 x 10 ⁹	8 x 10 ¹²
	Extracted bunch form	1-10 s spill (slow) Single bunch 70ns (fast)	10-100 s spill	Single bunch 50ns
	Stored beam energy E_{beam} [kJ]	51.5	6.1	93.0
d?) for γ_{tr}	Emittance @ inj. $\epsilon_{x,y}$ [mm mrad]	34 x 14	15 x 5	12 x 4
	Emittance @ extr. $\epsilon_{x,y}$ [mm mrad]	1 x 4.0 (slow) 9.6 x 4.0 (fast)	1.0 x 0.7	2.0 x 0.7

Geometrical Acceptance: 3 x maximum emittance

Dynamic Aperture: 3.4 sigma

• (5 x length of SIS18)

Superperiodicity: 6

- Cells per period: 14
- Focusing structure: Doublet

Circumference: 1083.6 m

- 108 Dipoles (superferric)
 - 1.9 T, 4 T/s
 - Nominal current: 13.1 kA
- 168 Quadrupoles (superferric)
 - 27.8 T/m
 - Nominal current: 10.5 kA
- Extraction modes:
 - Fast, 1...8 bunches
 - Slow, KO-Extraction up to 10 s
- Acceleration for every ion from protons to uranium (and beyond?)
 - Variable quadrupole powering for γ_{tr} shifting or γ_{tr} -jump

SIS100: Lattice design criterias

- 1. Length: 5 x SIS18 length (= 1 083.6 m)
- 2. Reference ion operation: U²⁸⁺
 - Localize beam ionization losses
 - Control vacuum pressure
- 3. Secondary ion: Protons
 - Variable γ_t-optics by multiple quadrupole families
 - Fixed γ_t -optics utilizing fast γ_t -jump quadrupoles
- 4. RF system
 - Room temperature cavities, dispersion free straight sections
 - State-of-the-art bunch manipulations: Bunch merging & compression, Barrier buckets
- 5. Versatile extraction modes
 - Fast bipolar Kicker system (internal emergency dump)
 - Slow extraction: KO-excited beam, resonant extraction

Images courtesy of M. Konradt / J. Falenski

SIS100: Lattice design

- Doublet focusing structure: up to 100% collimation efficience reachable with focusing order DF
 - First called "storage mode lattice" because many U²⁹⁺ particles survived one complete turn.
 - **Dipoles act as a charge state separator** when bending angle per cell is chosen correctly.
 - Quadrupoles are stronger than obviously necessary (over-focussing) to assure survival of beam until it reaches the collimator (which gives other problems -> protons).
- U²⁹⁺ loss positions are nicely peaked at the position of the collimators
- Dynamic vacuum calculations showed that in spite of the very well controlled losses, a huge pumping speed will be required
 - Cold vacuum chambers
 - SC magnets

Risk assessment

- What to protect?
 - 1. Lives (people)!
 - 2. Health (people)!
 - e.g. losing the thumb \cong losing one eye \rightarrow partial disability
 - 3. Environment
 - Radiation, chemicals,
 - EMC (Electromagnetic Compatibility, not E=mc²)
 - Noises
 - ...
 - 4. Machine

- Damage of expensive equipment (> 100,000,000 € !)
 - Long-running replacement times / repair times
 - Damage
 - Activation ("1 W/m" → 1 mSv/h after 4 h @ 40 cm after 100 days of operation)
 - Availability
- Legal necessity
 - §§ 5, 6 Arbeitsschutzgesetz, § 3 Betriebssicherheitsverordnung
 - § 6 Gefahrstoffverordnung, §§ 89, 90 Betriebsverfassungsgesetz
- What remains?
 - **Residual risks** (for radiation protection: ALARA = As Low As Reasonable Achievable)

Hazard: a situation that poses a level of threat to the accelerator. Hazards are dormant or potential, with only a theoretical risk of damage. Once a hazard becomes "active": incident / accident. Consequences and possibility of an incident interact together to create RISK, can be quantified:

RISK = Consequences · Probability

Related to accelerators:

- Consequences of an uncontrolled beam loss
- Probability of an uncontrolled beam loss
- The higher the **RISK**, the more **Protection** is required

Consequences of a release of 600 MJ at LHC

The 2008 LHC accident happened during test runs without beam.

A magnet interconnect was defect and the circuit opened. An electrical arc provoked a He pressure wave damaging ~600 m of LHC, polluting the beam vacuum over more than 2 km.

Incidents happen

2008 SPS run

- Impact on the vacuum chamber of a 400 GeV beam of 3x10¹³ protons (2 MJ).
- Event is due to an insufficient coverage of the SPS MPS (known !).
- Vacuum chamber to atmospheric pressure, downtime ~ 3 days.

R. Steinhagen

Incidents happen

GSI Helmholtzzentrum für Schwerionenforschung GmbH

JPARC incident – May 2013

- Due to a power converter failure, a slow extraction was transformed into a fast extraction.
 - Extraction in milliseconds instead of seconds.
- As a consequence of the high peak power, a Gold muon conversion target was damaged and radio-isotopes were released into experimental halls.
 - Machine protection coupled to personnel protection!
- Investigations and protection improvements done, J-PARC restart after ~9 month.

One insufficiently covered failure case had major consequences !

Risk Management Gradient

GSI Helmholtzzentrum für Schwerionenforschung GmbH

- To avoid (yokeru) inadvertent errors (poka)
- Industrial processes designed to prevent human errors
 - Concept by Shigeo Shingo: 'Toyota Production System' (TPS, aka. 'lean' systems)
- Common mistakes, procedural errors, etc. affecting machine performance
- Real-World Examples:
 - Polarity protection of electrical plugs (e.g. phone, Ethernet cable)
 → SIS18 profile grid connectors
 - Procedures: e.g. ATM machine: need to retrieve card before money is released (↔ prevents missing card)

R. Steinhagen

FAIR Machine Protection Concepts

- Machine & System Design
 - Passive absorbers, machine optics, collimation system, material choices, ...
- Active protection
 - Fast-Beam-Abort System (SIS100 & SIS18, turn \rightarrow 'ms'-scale)
 - Setup-Beam-Flag (SBF)
 - Beam is safe for playing with, "Pilot beam"
 - Interlock System (slow, '~100 ms' scale)
 - Beam Transmission Monitoring System
- Procedural protection
 - Beam-Presence-Flag (BPF)
 - no high-intensity beam injection into previously empty machine
 - Management of Critical Settings
 - Poka-Yoke
 - Intensity Ramp-up Concept
 - Don't inject high-intensity beam without having the optics & machine performance checked with lower intensity beams
 - Sequencer (guide/help operation to avoid common mistakes)

Proposal: FAIR Beam Modes – State Diagram

Machine protection

- In the past (and present operation of SIS18), devices protect only themselves
 - Caused e.g. by media supply, short circuit, ...
 - Usually instantly power down and
 - generation of an interlock.
- When a device powers down, the result for the machine could be bad
 - Magnets can quench (by beam energy deposition, insufficient cooling, ...),
 - Sensible equipment could be damaged by beam heating
 - S-FMEA (System Failure Modes and Effect Analysis) has to be done.
- Foreseen to protect the machine:
 - Collimation systems (passive protection)
 - Equipment monitoring and beam monitoring
 - Quench detection and protection (QD/QP)
 - Interlock systems
 - Emergency kicker + dump

- 1. Avoid that a specific failure can happen
- 2. Detect failure at hardware level and stop beam operation
- 3. Detect initial consequences of failure with beam instrumentation

How to stop beam operation:

- 1. Inhibit injection
- 2. Extract beam into emergency beam dump or
- 3. Stop beam by beam absorber / collimator

Is activation an issue?

Yes!

- Components have to be human maintainable, so (uncontrolled!) activation has to be limited.
- Hands-on-maintenance: Dose rate < 1 mSv/h at a distance of 40 cm after 100 days of operation and 4 hours of downtime.
- Standard assumption for protons: Uncontrolled losses have to be < 1 W/m
 5...10% protons at 4...28.8 GeV/u
- For heavy ions: < 5 W/m
 → 20% U²⁸⁺ at 200 MeV/u
 → 10% U²⁸⁺ at 2.7 GeV/u
 Already larger than dynamic vacuum effects allow.
- Controlled losses: Extraction sector S5 is already prepared; components have to be remote / fast serviceable (Magnetic + Electrostatic septa, radiation resistant quadrupoles).
- Halo collimators, Cryo catchers would be more activated.
- Building design has got separate beam and supply areas. The latter would be accessible without any activation problems.

Beam impact on accelerator components

- SIS100 stored beam energy
 - lons: 3.7 ... 51.5 kJ
 - 11.2 g TNT / 1.5 ml Kerosine (a few drops)
 - Protons: 12.9 ... 93.0 kJ
 - 20.2 g TNT / 2.7 ml Kerosine (half a tea spoon)
- Melting/sublimation of acc. components (stainless steel):
 - SPS event with 450 GeV beam: Vacuum chamber burnt through with 2 MJ beam
 - Experimental damage limit for protons ~52 kJ/mm² SIS100: with protons: ~1 kJ/mm² PS: ~1 kJ/mm²
 - Bragg peak has to be considered
 - Temperature should not be an issue (details on the next pages)
- Quench limit of SC cable (Cu/NbTi)
 - Nuclotron cable: ~1.6 mJ/g [1]
 - Quench recovery time:
 - 10 min at the Serial Test Facility,
 - ~1 h in the SIS100

[1]: Some Aspects of Cable Design for Fast Cycling Superconducting Synchrotron Magnetism Khodzhibagiyan, Kovalenko, Fischer, IEEE TOAS Vol. 14, No 2, 2004

Courtesy of R. Schmidt / CERN

Is melting an issue? (I)

- SIS18 beam onto FRS target
 - Cu, Al und C Targets, 1 mm thick.
 - Graphite \rightarrow no problems.
- Strong focused σ_x =0.44 mm σ_y = 0.99 mm, 125 MeV/u, 7x10⁹...1x10¹⁰ U²⁸⁺/ Spill.
- Sometimes, up to 100 shots were necessary to drill a hole.
- Average power was only ~1 W, but peak energy ~3 kJ/g.
- Process: target melts spontaneous but hardens again before next shot (only radiation cooling).

H. Weick

Is melting an issue? (II)

- Take damage limit for protons onto steel (52 kJ/mm² ~ 1 kJ/g)
 - Protons: max. 93 kJ beam energy, beam spot size r=0.75 mm
 - Ions: max. 51.5 kJ beam energy, beam spot size r=0.56 mm → ignored dE/dx!
- One should think those spot sizes can not be achieved at maximum energy by optics of the machine:
 - r_{avg} =3.8 mm (2 σ) for p γ_t -shift optics
 - r_{avg}=5.4 mm (2σ) for ion optics
- But when calculating temperature rise analytically:

$$\Delta T = \frac{N \cdot dE/dx}{c \cdot A \cdot \rho}$$

- thin targets, no phase transition
- no shock waves, no heat transfer or radiation
- Full design beam power for
 - Protons: no problem!
 - Heavy ions (5x10¹¹ U²⁸⁺) are above the limit!
 - But: Before it comes to melting, s.c. magnets will quench already (6 orders of magnitude earlier)

Material	Steel
Used in	Yoke, He- pipes Chambers
Melting Temp. / K	1,921
Specific heat c / J/(g*K)	0.49
Latent melting heat / J/g	270
Total melting energy density (T=15 K) / J/g	1,204
Total melting energy density (T=293 K) / J/g	1,068
Density p / kg/m ³	7,870
<i>Proton</i> beam spot radius for melting @15K / mm	0.4
Max. ΔT for <i>proton</i> beams with 3.8mm spot radius / K	28
<i>Uranium</i> beam spot radius for melting @15K / mm	5.6
Max. ΔT for <i>Uranium</i> beams with 5.4mm spot radius / K	2,291

Heating of materials by the beam

- 1x10¹⁰ U²⁸⁺ are "not dangerous" → do not cause instant permanent damage by melting room temperature sections of SIS100...
- Safe beams / pilot beams should contain at maximum half / a quarter of that intensity!

Potential beam damage in SIS100: Slow extraction

When a

- full intensity high energy heavy ion beam spirals out
- in a short time (µs...ms) and
- hits a small volume (e.g. wires, thin vacuum chambers)
- especially at room temperature regions,
- > material can melt.
- Unavoidable during slow (KO) extraction: Heavy ions colliding with the electrostatic septum wires are stripped and lost
 - At least ~10 % of the beam will hit the wires during slow extraction.
 - W-Re wires <u>day 0 version</u>: 100 μm "thick", <u>final version</u>: 25 μm thick (thermal / stability issues)
 - Warm (radiation hard) quadrupoles behind the septum.
 - Loss will be controlled (collimator / low desorption rate surface).
- Step width of particles at slow extraction has to be limited to avoid over-heating of the wires
 - Low intensity pilot beams,
 - Phase space tomography,
 - Limiting extraction length at full heavy ion intensity to durations e.g.> 5 s.
 - Active protection with beam loss monitors (BLM's)

Emergency dump of SIS100

- Part of the active machine protection.
- Emergency dump system:
 - Fast bipolar kicker magnets for extraction,
 - 2.5 m long, internal absorber block below the magnetic septum #3.
- Design:
 - No need for synchronous ramping of beam line to the external dump and "dead time" during ramp up of HEBT switching magnets.
 - Beam dump will happen in ~26 µs after generation of request
 → fast enough for nearly all processes.
 - Various abort signals will be concentrated in a switch matrix (allows masking of some sources e.g. for low intensity beams). Incorporation of e.g. experiment aborts is easily possible.
 - Kicking into a coasting beam will result in up to 25% beam losses (smear out after emergency dump). Have to develop more sophisticated methods (Shut off KO extraction, rebunch, kick?).
- Absorber:
 - Special chamber in lower part of magnetic septum #3
 - 20 cm graphite in front, 225 cm absorber (W, Ta, ...)
 - Tilted or saw-tooth surface to smear out Bragg peak in the absorber material (limits temperature rise).

FLUKA simulations of emergency dump

- Simulation assumptions
 - 5.0*10¹¹ U²⁸⁺, 1.0-2.7 GeV/u
 - 2.5*10¹³ p, 29.0 GeV/u
 - Gaussian beam distribution with $\sigma_{x/y} = 3 \text{ mm}$
 - Full beam energy deposited within < 1 μs
- No melting, but absorber surface has to be inclined (e.g. by 20° which gives a factor of 4 less temperature rise).
- Both maximum and average energy depositions are well below quench limit.
- With W instead of Ta, energy deposition in the SC quadrupole coils drops by another 30%.

20

ιση	energy deposition / mJ/g	energy deposition / mJ/g	margin
2.5x10 ¹³ p, 29 GeV	0.29	0.063	5.5 / 25.4
5.0x10 ¹¹ U ²⁸⁺ , 1.0 GeV/u	0.01	0.003	145 / 592
5.0x10 ¹¹ U ²⁸⁺ , 2.7 GeV/u	0.10	0.025	16 / 64

Risk assessment: System-FMEA

- Failure Modes and Effects Analysis (FMEA) on the system level of SIS100
 - Goal: Identify the machine failures in a rational approach,
 - Done according to IEC 61508,
 - Standardized values for personnel safety,
 - Subjective chosen values for machine protection (separately!).
 - Only single errors are accounted for!
- How to get Lambda or MTTF (Mean Time To Failure) values ?
 - **Experience** with existing or similar components/prototypes, ...
 - GSI data,
 - Nuclotron data,
- $\lambda_{UCL} = \frac{\chi^2_{\alpha, \nu}}{2T} \quad with \ \nu = 2f + 1$
- LHC data.
- Calculated (on a per-part basis) according to ISO 13849-1:2008 and MIL Handbook for
 - SCU (Scalable Control Unit): $\lambda = 8,626$ FIT MTTF (Mean Time To Failure) = 13.2 years
 - Quench detection cards from KIT: λ = 1,240 FIT MTTF = 92 years

Severity	Meaning for personnel	Meaning for the machine	Examples
S1	Minor injuries at worst	Short accelerator recovery time MTTR < 2 h	 Target irradiated wrongly Magnet quench Superficial damage of a beam pipe Fuse blown Machine activated
S2	Major injuries to one or more persons	Accelerator recovery time MTTR < 1 d	 Target destroyed Protective devices (e.g. at septum) burnt through Safety valves in He supply or return blown
S3	Loss of a single life	Long shutdown MTTR < 1 a	 Septum wires burnt through He safety valves of cryostats blown Busbar/cables burnt Holes in beam pipes
S 4	Multiple loss of life	Catastrophe	Should never happen!
	(NOT MEASUREMENT SENSITIVE) MIL-HODK-217F 2.DECEMBER 1991 SUPPOREDMO 60.+000.470, Million 1		

MILITARY HANDBOOK

RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT

Risk assessment: How to define SIL levels?

- When defining a safety function, e.g.:
 "Dump Magnet Energy when a quench occurs", how reliable the function has to be?
- S3: Damage so large that downtime >> 1d
- A1: No personnel present when powering S.C. magnets!
- G1: It is possible to prevent the magnet from quenching (e.g. observing temperature)
- W2: Possibility for a quench is >5%, but <25% of operation time
- SIL3 is necessary for achieving a safe quench detection and dump resistor activation, PFH<1x10⁻⁷ failures/h.
- Other example: PSS: "Deny user request to enter restricted area during beam operation."
- also SIL3, but with PFD<1x10⁻³ failures/demand.

Risk assessment: Magnets, busbars, current leads

Failures:

- Quenches
- Thermal runaways
- Turn-to-GND short
- Turn-to-Turn short
- Most severe failures:
 - Quenches (destroys busbars or magnet coils)
 - **Dipole:** full beam could hit the E-Septum wires in ~1 ms
 - Quadrupole, Chrom. Sextupole, Res. Sextupole, **Octupole:**

beam could hit the Halo collimators, E-Septum wires or external targets / detectors during slow extraction in ~1 ms

- Chosen mitigations:
 - Magnet interleaving Quench Detection (QD)
 - Emergency dump for detected failures (started just before magnet energy dump)
 - Interlocks
- Failsafe behavior:
 - ~99% reduction of risk
 - Already incorporated in hardware design (SIL3 for QD!) \checkmark
 - Turn-to-Turn shorts only detectable during commissioning and pilot beam operation!

quench

Risk assessment: Power Converters

- DCCT or control loop causes more or less current than set
- IGBT shorts
- Media (cooling water) or sensor failures
- Primary Voltage supervision sensor failures
- PE failures (dipoles, quadrupoles, septum 3)
- Most severe failures:
 - **Dipole PC:** full beam could hit the E-Septum wires in ~1 ms
 - Quadrupole, Chrom. Sextupole, Res. Sextupole, Octupole, Radres. Quadrupoles PC's: beam could hit the E-Septum wires or external targets / detectors during slow extraction in ~1 ms
- Chosen mitigations:
 - Redundant DCCT in some cases
 - Emergency dump for detected failures (started just before magnet energy dump)
 - Interlock
- Failsafe behavior:
 - ~92% reduction of risk
 - Still (minor) modifications in hardware design necessary

Risk assessment: RF acceleration system

Failures:

- LLRF Amplitude control/DAC failure
- LLRF DDS / Group DDS failure
- Cavity GAP Arc ignition, shorts
- Resonance frequency control failure
- Driver / Power Amplifier failures
- B2B Transfer unsynchronized
- Media or sensor failure
- 50 Ohm Terminator failure
- Most severe failure:
 - Gap arc ignition:
 - At least a part of beam will hit cryo collimators (spiraling into it in around 1 ms), happens quite often
- Chosen mitigations:
 - Emergency dump for detected failures
 - Interlock (for media or sensor failures)
- Failsafe behavior
 - ~89% reduction of risk
 - Minor modifications in hardware/software design are necessary

Dangerous undetected failures

Dangerous detected failures

Risk assessment: Injection/Extraction system

Failures:

- Single kicker does not fire, voltage deviation
- Single kicker fires unintentionally
- E-Septum sparking
- Most severe failures:
 - E-Septum sparking: full beam could hit E-Septum wires
 - Single extraction kicker does not fire / voltage deviation: beam can hit septum or HEBT / detectors / targets
- Chosen mitigations:
 - Emergency dump partial beam loss can not be prevented
 - no warning time
 - up to ~30% beam loss when kicking in coasting beam during slow extraction
 - Low intensity pilot beam for optimizing settings
 - E-Septum has to be actively protected (wire supervision)
 - "Cleaning" of beam which remains after extraction kick onto the emergency dump.
- Failsafe behavior:
 - 89% reduction of risk
 - Further tracking studies will follow to identify and reduce risks

Dangerous undetected failures

Dangerous detected failures

Risk assessment: Global/Local cryogenic system

Failures:

- Valve or valve control failure
- He supply/return line rupture or leak
- Voltage breaker leakage or rupture
- Valve bellow rupture
- Compressor / pressure regulation failure

Most severe failures:

- Voltage breaker leakage or rupture: Paschen limit, repair time
- Valve bellow and He supply/return line rupture: long shutdown for repair
- Most failures would result in quench, but this is detected by pressure / temperature sensors and QD.

Chosen mitigations:

- Pressure readout, Emergency dump (started with magnet energy dump, which is more important) for fast processes
- Interlock for slow processes
- QA (Quality Assurance) for all weldings and QD (Voltage tabs) for all interconnections
- Maintenance plans for valves
- Failsafe behavior:
 - 88% reduction of risk
 - Care has to be taken in design and read-out of insulation vacuum pressure (cold cathode gauges) – some failures have short rise times.

Dangerous detected failures

Risk assessment: Control system

- Hardware, Software and Operators
- Failures:
 - Wrong data delivered to device
 - Timing system does not trigger → all effects possible...
 - Slow extraction efficiency too low
 - Feedback systems (Orbit, TFS, LFS) fail (currently not calculated)
- Most severe failures:
 - Software errors: full beam could hit anywhere
 - Physic model errors: full beam could hit anywhere
 - Operator thinks in the wrong direction: full beam could hit anywhere
- Chosen mitigations:
 - Low intensity pilot beam for verifying optics, physics model and machine settings, intensity ramp up concept, locking of critical parameters at high intensities
 - BLM's, Transmission supervision, Emergency dump
 - Optics check for machine setting parameters, Training for operators
 - Data check (read-back) of machine settings (cyclic every few minutes); Set and Actual Value - window comparison
- Failsafe behavior
 - ~99% reduction of risk
 - Human factors still an issue
 - SCU and timing system already designed with very large MTBF

Downtime / h/a Events / a

Risk assessment: Beam dynamics and others

10.000.000

5.000.000

0

Beam in Kicker Gap

vacuum leak (cold)

Beam pipe

vacuum leak (warm)

Beam pipe

- Failures:
 - Beam instabilities (difficult to estimate correctly)
 - Beam in kicker gap
 - UHV pressure rise, vacuum leakage, FOD (objects in vacuum chamber - LEP, ESR, SIS18)
 - HEBT / Experiment note ready, EMC, Earthquakes, ... (not calculated)
- Most severe failures:
 - Beam instabilities
 - Cold UHV chamber leaks (long downtimes for repair!).
- Chosen mitigations:
 - Emergency dump
 - BLM's, cryo catcher current readout
 - Robot for searching "UFO"s
- Failsafe behavior:
 - 33% reduction of risk
 - One never knows what high energy / intensity or compressed beams do in real
 - Beam physics studies are ongoing

Transversal eam instability

ceam

High Current
 A

Object in

vacuum chamber

oeam instability High Current
 A

Longitudinal

SIS100 risk assessment: Results

- Most severe (hard to detect at warm and long repair times): <u>cold leaks / defects.</u>
- Heavy ion beam power of SIS100 is high enough to damage sensible equipment (e.g. e-septum).
- All devices are designed self-protecting when internal failures occur, but not necessarily have optimum behavior with respect to the beam. Work is progressing to improve this.
- <u>For emergency dump:</u> Beam losses caused by spurious errors (e.g. power converter problems, RF failures, quenches, ...) as well as dynamically unstable beams can be mitigated effectively by the emergency dump system.
- By failsafe concept, up to 85% of the total failures in time can be detected or mitigated.
- Given 6,000 h operating hours per year, an availability of 66% (3,957 h/a) is currently estimated.

Differences	313100	15
Magnet type	SC	NC
Beam pipe vacuum chamber thickness / mm	0.3	1.5
Heavy ion beam energy / kJ	51.5	~7.1

010400

for Proton operation:

Similarities	SIS100 (γ _t - shift settings)	PS
Particles per cycle	2*10 ¹³	3*10 ¹³
Injection energy / GeV	4.0	1.4
Extraction energy / GeV	28.8	20.0
Stored energy Inj. / kJ	12.7	6.8
Stored energy Extr. / kJ	91.1	96.9
Max. beam radius Inj. / mm	29	29
Max. beam radius Extr. / mm	12	8
Min. beam radius Inj. / mm	3.6	17.7
Min. beam radius Extr. / mm	1.5	5.6

For p operation, CERN PS and SIS100 similar in energy and spot size (=damage potential); for heavy • ions, SIS100 is more dangerous...

Comparison of SIS100 with CERN PS FAR = I

Difforoncos

- No major accidents in PS due to beam losses ٠
- Spot size in SIS100 even larger with γ_t -jump settings •
- LHC (one beam): 362 MJ => 4000 times more energy!

2.5*10¹³, 29 GeV Protons energy deposition in the dump

- After an absorber length of 1 m:
 - hardly any primary protons left
 - homogeneous energy distribution by secondaries
- Temperature values well below the sublimation/melting points
- Energy deposition values in upper and lower coils identical within 30 %

5*10¹¹ U²⁸⁺, 2.7 GeV/u energy deposition in the dump

