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SIS100: 
Main Parameters – a versatile machine 

 Circumference: 1083.6 m 

 (5 x length of SIS18) 

 Superperiodicity: 6 

 Cells per period: 14 

 Focusing structure: Doublet 

 108 Dipoles (superferric) 

 1.9 T, 4 T/s 

 Nominal current: 13.1 kA 

 168 Quadrupoles (superferric) 

 27.8 T/m 

 Nominal current: 10.5 kA 

 Extraction modes: 

 Fast, 1...8 bunches 

 Slow, KO-Extraction up to 10 s 

 Acceleration for every ion from 

protons to uranium (and beyond?) 

 Variable quadrupole powering for 𝛾𝑡𝑟 

shifting or 𝛾𝑡𝑟-jump 
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Item RIB (U28+) CBM (U92+) Protons for pbar 

Magnetic rigidity @ extr. 𝐵 ⋅ 𝜌 [Tm] 27 ...64 ... 100 100 100 

Energy range @ extr. 𝐸 [GeV/u] 0.4 ... 1.5 ... 2.7 10.7 28.8 

Max. repetition rate 𝑓𝑟𝑒𝑝 [Hz] 0.35 (slow) 

0.50 (fast) 

0.09 0.4 

Relativistic 𝛾 ... 3.9 12.4 31.9 

Transition energy 𝛾𝑡𝑟 15.5 14.3 18.3 (45*) 

Tune 𝜈𝑥,𝑦 17.3/17.8 (slow) 

18.9/18.8  (fast) 

17.3/17.8 10.4/10.3 

(21.8/17.7*) 

Number of ions per cycle 𝑁 5 x 1011 1.5 x 1010 2 x 1013 

Max. number of ions per second [1/s] 1.8 x 1011 (slow) 

2.5 x 1011  (fast) 

1.5 x 10 9 8 x 1012 

Extracted bunch form 1-10 s spill (slow) 

Single bunch 70ns (fast) 

10-100 s spill Single bunch 50ns 

Stored beam energy 𝐸𝑏𝑒𝑎𝑚 [kJ] 51.5 6.1 93.0 

Emittance @ inj. 𝜖𝑥,𝑦 [mm mrad] 34 x 14 15 x 5 12 x 4 

Emittance @ extr. 𝜖𝑥,𝑦 [mm mrad] 1 x 4.0 (slow) 

9.6 x 4.0  (fast) 

1.0 x 0.7 2.0 x 0.7 

Geometrical Acceptance:  

3 x maximum emittance 

 

Dynamic Aperture: 

3.4 sigma 
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SIS100: 
Lattice design criterias 

1. Length: 5 x SIS18 length (= 1 083.6 m) 

2. Reference ion operation: U28+ 

 Localize beam ionization losses 

 Control vacuum pressure 

3. Secondary ion: Protons 

 Variable 𝛾𝑡-optics by multiple quadrupole families 

 Fixed 𝛾𝑡-optics utilizing fast 𝛾𝑡-jump quadrupoles 

4. RF system 

 Room temperature cavities, dispersion free straight sections 

 State-of-the-art bunch manipulations: Bunch merging & 

compression, Barrier buckets 

5. Versatile extraction modes 

 Fast bipolar Kicker system (internal emergency dump) 

 Slow extraction: KO-excited beam, resonant extraction 
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SIS100 

SIS300 

Images courtesy of M. Konradt / J. Falenski 
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SIS100: 
Lattice design 

 Doublet focusing structure: up to 100% 

collimation efficience reachable with focusing 

order DF 

 First called “storage mode lattice” because many U29+ 

particles survived one complete turn. 

 Dipoles act as a charge state separator when bending 

angle per cell is chosen correctly. 

 Quadrupoles are stronger than obviously necessary 

(over-focussing) to assure survival of beam until it 

reaches the collimator (which gives other problems  

protons). 

 

 U29+ loss positions are nicely peaked at the 

position of the collimators 

 

 Dynamic vacuum calculations showed that in 

spite of the very well controlled losses, a huge 

pumping speed will be required 

 Cold vacuum chambers 

 SC magnets 

4 
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Risk assessment 

 What to protect? 
1. Lives (people)! 

2. Health (people)! 

 e.g. losing the thumb  losing one eye  partial disability 

3. Environment 

 Radiation, chemicals, 

 EMC (Electromagnetic Compatibility, not E=mc²) 

 Noises 

 ... 

4. Machine 

 Damage of expensive equipment (> 100,000,000 € !) 

 Long-running replacement times / repair times 

 Damage 

 Activation (“1 W/m”  1 mSv/h after 4 h @ 40 cm after 100 

days of operation) 

 Availability 

 Legal necessity 
 §§ 5, 6 Arbeitsschutzgesetz, § 3 Betriebssicherheitsverordnung 

 § 6 Gefahrstoffverordnung, §§ 89, 90 Betriebsverfassungsgesetz 

 What remains? 
 Residual risks (for radiation protection: ALARA = As Low As Reasonable 

Achievable) 

5 

This talk 
PED 
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Hazard and Risk for accelerators 

● Hazard: a situation that poses a level of threat to the accelerator. Hazards 
are dormant or potential, with only a theoretical risk of damage. Once a 
hazard becomes “active”: incident / accident. Consequences and 
possibility of an incident interact together to create RISK, can be 
quantified: 

 

RISK = Consequences ∙ Probability 

 
Related to accelerators: 

● Consequences of an uncontrolled beam loss 

● Probability of an uncontrolled beam loss 

● The higher the RISK, the more Protection is required 

 

 R. Steinhagen 
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Consequences of a release of 600 MJ at 

LHC   

Arcing in the interconnection 

53 magnets had to 

be repaired 

The 2008 LHC accident happened during test runs without beam. 

A magnet interconnect was defect and the circuit opened. An electrical arc provoked a He 

pressure wave damaging ~600 m of LHC, polluting the beam vacuum over more than 2 km.  

Over-pressure 

Magnet displacement 

R. Schmidt 
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Incidents happen 

2008 SPS run 

• Impact on the vacuum chamber of a 400 GeV 
beam of 3x1013 protons (2 MJ). 

• Event is due to an insufficient coverage of the 
SPS MPS (known !). 

• Vacuum chamber to atmospheric pressure, 
downtime ~ 3 days. 

Risk = (3 days downtime + dose to workers) x (1 event / 5-10 years) 

R. Steinhagen 
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Incidents happen 

JPARC home page – October 2013 

Risk = (9 month downtime + dose to workers) x (1 event / 12 years) 

R. Steinhagen 
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JPARC incident – May 2013 

• Due to a power converter failure, 
a slow extraction was transformed 
into a fast extraction. 

 Extraction in milliseconds instead 
of seconds. 

• As a consequence of the high 
peak power, a Gold muon 
conversion target was damaged 
and radio-isotopes were released 
into experimental halls. 

 Machine protection coupled to 
personnel protection! 

• Investigations and protection 
improvements done, J-PARC 
restart after ~9 month. 

One insufficiently covered failure 
case had major consequences ! 
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Risk Management Gradient 

RISK 

Poka-Yoke 
'Mistake Proofing' 

minimising machine activation 
(ALARA principle) 

Machine Protection 

preventing quenches intercepting common mistakes, 
procedural errors, etc. 

affecting machine performance 

investment protection 
Use-cases: 

Devices: 

FAIR 
(SW) Interlock System 

Sequencer & 
operational 
procedures 

FAIR-SIS100 
Fast Beam Abort Sys. 
(HW Interlock System) 

FAIR 
Machine & System 

Design 

 Systems: 

passive absorbers, 
machine optics, 
material choices 

PC, FMCM (?), QPS, FCT, BLMs, ... 

??? 

time-scales: 100 ms 50 us < turn 
10s of seconds → minutes/hours 

LSA, settings monitoring, ... 

R. Steinhagen 
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Poka-Yoke (ポカヨケ) – 'Mistake-Proofing' 

● To avoid (yokeru) inadvertent errors (poka) 

● Industrial processes designed to prevent 

human errors 

– Concept by Shigeo Shingo: 'Toyota Production 

System' (TPS, aka. 'lean' systems) 

● Common mistakes, procedural errors, etc.  

affecting machine performance 

● Real-World Examples: 

– Polarity protection of electrical plugs (e.g. 

phone, Ethernet cable) 

 SIS18 profile grid connectors 

– Procedures: e.g. ATM machine: need to 

retrieve card before money is released (↔ 

prevents missing card) 

R. Steinhagen 
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FAIR Machine Protection Concepts 

● Machine & System Design 

– Passive absorbers, machine optics, collimation system, material choices, ... 

● Active protection 

– Fast-Beam-Abort System (SIS100 & SIS18, turn → 'ms'-scale) 

– Setup-Beam-Flag (SBF) 

● Beam is safe for playing with, “Pilot beam” 

– Interlock System (slow, '~100 ms' scale) 

– Beam Transmission Monitoring System 

● Procedural protection 

– Beam-Presence-Flag (BPF) 

● no high-intensity beam injection into previously empty machine 

– Management of Critical Settings 

– Poka-Yoke 

● Intensity Ramp-up Concept 

– Don't inject high-intensity beam without having the optics & machine performance checked with lower intensity 
beams 

● Sequencer (guide/help operation to avoid common mistakes) 

R. Steinhagen 
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Proposal: 

FAIR Beam Modes – State Diagram 

Post-Mortem/ 
Beam Dump 

Recovery: 
No Beam 

No Beam 

Pilot Beam 

Intensity 
Ramp-Up 

Adjust 

Stable Beams/ 
Production 

cool down + cycling after 
magnet quench or main PS failure 
N.B. beam mode = machine mode 

Here'd be Happiness 
producing physics beams 
most settings locked-down 

basic accelerator setup 
injection  extraction 
typically with (but not limited to) 
low setup intensities (SBF=true) 

normal operational path 
error/fault case 
low-intensity 

always 
start here: 

mag. cycles only 
e.g. RF conditioning 

Verification of machine-protection functionality 
Minor adjustment of intensity related effects (e.g. ∆Q(intensity)) 

Tune beam parameters (within limits) to 
suit the experiments needs/performance 

“handshake” 

N.B.: 
1) omitted arrows to 'No Beam'/'Pilot Beam' for better 

visibility (always possible) 
2) modes follow existing normal setup routine, initial 

transition acknowledged by operator, subsequent 
driven automatically by sequencer 

R. Steinhagen 
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Machine protection 

 In the past (and present operation of SIS18), 

devices protect only themselves 

 Caused e.g. by media supply, short circuit, ... 

 Usually instantly power down and 

 generation of an interlock. 

 When a device powers down, the result for the 

machine could be bad 

 Magnets can quench (by beam energy deposition, 

insufficient cooling, ...), 

 Sensible equipment could be damaged by beam 

heating 

 S-FMEA (System Failure Modes and Effect Analysis) 

has to be done. 

 

 Foreseen to protect the machine: 

 Collimation systems (passive protection) 

 Equipment monitoring and beam monitoring 

 Quench detection and protection (QD/QP) 

 Interlock systems 

 Emergency kicker + dump 

15 

1. Avoid that a specific failure can happen 

2. Detect failure at hardware level and stop beam 

operation 

3. Detect initial consequences of failure with 

beam instrumentation 

 

How to stop beam operation: 

1. Inhibit injection 

2. Extract beam into emergency beam 

dump or 

3. Stop beam by beam absorber / 

collimator 
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Is activation an issue? 

 Yes! 

 Components have to be human maintainable, so 
(uncontrolled!) activation has to be limited. 

 Hands-on-maintenance: 
Dose rate < 1 mSv/h 
at a distance of 40 cm 
after 100 days of operation and 
4 hours of downtime. 

 

 Standard assumption for protons: Uncontrolled losses 
have to be < 1 W/m 
 5…10% protons at 4…28.8 GeV/u 

 For heavy ions: < 5 W/m 
 20% U28+ at 200 MeV/u 
 10% U28+ at 2.7 GeV/u 
Already larger than dynamic vacuum effects allow. 

 

 Controlled losses: Extraction sector S5 is already 
prepared; components have to be remote / fast 
serviceable (Magnetic + Electrostatic septa, radiation 
resistant quadrupoles). 

 Halo collimators, Cryo catchers would be more 
activated. 

 Building design has got separate beam and supply 
areas. The latter would be accessible without any 
activation problems. 

16 

Supply area 

Beam tunnel 
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Beam impact on accelerator 

components 

 SIS100 stored beam energy 

 Ions: 3.7 ... 51.5 kJ 

 11.2 g TNT / 1.5 ml Kerosine (a few drops) 

 Protons: 12.9 ... 93.0 kJ 

 20.2 g TNT / 2.7 ml Kerosine (half a tea spoon) 

 Melting/sublimation of acc. components (stainless steel): 

 SPS event with 450 GeV beam: Vacuum chamber burnt through with 2 

MJ beam 

 Experimental damage limit for protons ~52 kJ/mm² 

SIS100: with protons: ~1 kJ/mm² 

PS: ~1 kJ/mm² 

 Bragg peak has to be considered 

 Temperature should not be an issue (details on the next pages) 

 Quench limit of SC cable (Cu/NbTi) 

 Nuclotron cable: ~1.6 mJ/g [1] 

 Quench recovery time: 

 10 min at the Serial Test Facility, 

 ~1 h in the SIS100 

 

[1]: Some Aspects of Cable Design for Fast Cycling Superconducting Synchrotron Magnetism Khodzhibagiyan, 

Kovalenko, Fischer, IEEE TOAS Vol. 14, No 2, 2004 
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Courtesy of R. Schmidt / CERN 
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Is melting an issue? (I) 

9 

• SIS18 beam onto FRS target 

– Cu, Al und C Targets, 1 mm thick. 

– Graphite  no problems.  

 

• Strong focused x=0.44 mm y = 0.99 mm, 125 MeV/u, 

7x109…1x1010 U28+/ Spill. 

• Sometimes, up to 100 shots were necessary to drill a 

hole. 

• Average power was only ~1 W, but peak energy ~3 kJ/g. 

 

• Process: target melts spontaneous but hardens again 

before next shot (only radiation cooling). 

 

H. Weick 
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Is melting an issue? (II) 

 Take damage limit for protons onto steel (52 

kJ/mm² ~ 1 kJ/g) 

 Protons: max. 93 kJ beam energy, beam spot size 

r=0.75 mm 

 Ions: max. 51.5 kJ beam energy, beam spot size 

r=0.56 mm  ignored dE/dx! 

 One should think those spot sizes can not be 

achieved at maximum energy by optics of the 

machine: 

 ravg=3.8 mm (2) for p gt-shift optics 

 ravg=5.4 mm (2) for ion optics 

 But when calculating temperature rise 

analytically: 

 
 

 thin targets, no phase transition 

 no shock waves, no heat transfer or radiation 

• Full design beam power for 

 Protons: no problem! 

 Heavy ions (5x1011 U28+) are above the limit! 

 But: Before it comes to melting, s.c. magnets will 

quench already (6 orders of magnitude earlier) 

Material Steel Cu G11 Al 

Used in Yoke, He-

pipes 

Chambers 

Coils, 

busbars 

Coil 

support 

Therm. 

shield 

Melting Temp. / K 1,921 1,358 422 933 

Specific heat c / J/(g*K) 0.49 0.39 0.60 0.90 

Latent melting heat / J/g 270 205 ~200 396 

Total melting energy density 

(T=15 K) / J/g 

1,204 722 436 1,220 

Total melting energy density 

(T=293 K) / J/g 

1,068 615 277 970 

Density r / kg/m³ 7,870 8,920 1,820 2,700 

Proton beam spot radius for 

melting @15K / mm 

0.4 0.5 0.9 0.4 

Max. DT for proton beams with 

3.8mm spot radius / K 

28 35 32 17 

Uranium beam spot radius for 

melting @15K / mm 

5.6 7.1 12.6 5.8 

Max. DT for Uranium beams 

with 5.4mm spot radius / K 

2,291 2,838 2,386 1,388 
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Δ𝑇 =
𝑁 ∙ 𝑑𝐸/𝑑𝑥

𝑐 ∙ 𝐴 ∙ 𝜌
 

Cross section 

of a quadrupole 
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Heating of materials by the beam 

20 C. Omet, HINT2015 

 1x1010 U28+ are „not dangerous“  do not cause instant permanent 

damage by melting room temperature sections of SIS100... 

 Safe beams / pilot beams should contain at maximum half / a quarter of 

that intensity! 
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U28+ @ 2.7 GeV/u 

Steel

Copper

Aluminum

Epoxy

Δ𝑇 =
𝑁 ∙ 𝑑𝐸/𝑑𝑥

𝑐 ∙ 𝐴 ∙ 𝜌
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Potential beam damage in SIS100:  

Slow extraction 

 When a 

 full intensity high energy heavy ion beam spirals out 

 in a short time (µs...ms) and 

 hits a small volume (e.g. wires, thin vacuum chambers) 

 especially at room temperature regions, 

 material can melt. 

 

 Unavoidable during slow (KO) extraction: Heavy ions colliding with 

the electrostatic septum wires are stripped and lost 

 At least ~10 % of the beam will hit the wires during slow 

extraction. 

 W-Re wires day 0 version: 100 µm “thick”, final version: 25 µm 

thick (thermal / stability issues) 

 Warm (radiation hard) quadrupoles behind the septum. 

 Loss will be controlled (collimator / low desorption rate surface). 

 

 Step width of particles at slow extraction has to be limited to avoid 

over-heating of the wires 

 Low intensity pilot beams, 

 Phase space tomography, 

 Limiting extraction length at full heavy ion intensity to durations 

e.g.> 5 s. 

 Active protection with beam loss monitors (BLM’s) 
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Septum wire 

position 
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Emergency dump of SIS100 

 Part of the active machine protection. 

 Emergency dump system: 

 Fast bipolar kicker magnets for extraction, 

 2.5 m long, internal absorber block below the magnetic 

septum #3. 

 Design: 

 No need for synchronous ramping of beam line to the external 

dump and “dead time” during ramp up of HEBT switching 

magnets. 

 Beam dump will happen in ~26 µs after generation of request 

 fast enough for nearly all processes. 

 Various abort signals will be concentrated in a switch matrix 

(allows masking of some sources e.g. for low intensity 

beams). Incorporation of e.g. experiment aborts is easily 

possible. 

 Kicking into a coasting beam will result in up to 25% beam 

losses (smear out after emergency dump). Have to develop 

more sophisticated methods (Shut off KO extraction, rebunch, 

kick?). 

 Absorber: 

 Special chamber in lower part of magnetic septum #3 

 20 cm graphite in front, 225 cm absorber (W, Ta, ...) 

 Tilted or saw-tooth surface to smear out Bragg peak in the 

absorber material (limits temperature rise). 
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FLUKA simulations of 

emergency dump 

 Simulation assumptions 
 5.0*1011 U28+, 1.0-2.7 GeV/u 

 2.5*1013 p, 29.0 GeV/u 

 Gaussian beam distribution with x/y = 3 mm 

 Full beam energy deposited within < 1 µs 

 

 No melting, but absorber surface has to be 

inclined (e.g. by 20° which gives a factor of 4 

less temperature rise). 

 Both maximum and average energy depositions 

are well below quench limit. 

 With W instead of Ta, energy deposition in the 

SC quadrupole coils drops by another 30%. 
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Quench limit 1.6 mJ/g ≈ 0.2 mJ/cm³ 

Ion Max. Coil 

energy 

deposition 

/ mJ/g 

Avg. Coil 

energy 

deposition 

/ mJ/g 

 

Quench 

margin 

2.5x1013 p, 29 GeV 0.29 0.063 5.5 / 25.4 

5.0x1011 U28+, 1.0 GeV/u 0.01 0.003 145 / 592 

5.0x1011 U28+, 2.7 GeV/u 0.10 0.025 16 / 64 
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Risk assessment: 

System-FMEA 

 Failure Modes and Effects Analysis (FMEA) on 
the system level of SIS100 
 Goal: Identify the machine failures in a rational 

approach, 

 Done according to IEC 61508, 

 Standardized values for personnel safety, 

 Subjective chosen values for machine protection 
(separately!). 

 Only single errors are accounted for! 

 

 How to get Lambda or MTTF (Mean Time To 
Failure) values ? 
 Experience with existing or similar 

components/prototypes, ... 
 GSI data, 

 Nuclotron data, 

 LHC data. 

 Calculated (on a per-part basis) according to ISO 
13849-1:2008 and MIL Handbook for 
 SCU (Scalable Control Unit): 

𝜆 = 8,626 FIT 
MTTF (Mean Time To Failure) = 13.2 years 

 Quench detection cards from KIT: 
𝜆 = 1,240 FIT 
MTTF =  92 years 
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Severity 
Meaning for 

personnel 

Meaning for the 

machine 
Examples 

S1 
Minor injuries 
at worst 

Short accelerator 

recovery time 

MTTR < 2 h 

• Target irradiated wrongly 

• Magnet quench 

• Superficial damage of a beam pipe 

• Fuse blown 

• Machine activated 

S2 
Major injuries 
to one or more 
persons 

Accelerator 

recovery time  

MTTR < 1 d 

• Target destroyed 

• Protective devices (e.g. at septum) 

burnt through 

• Safety valves in He supply or return 

blown 

S3 
Loss of a single 
life 

Long shutdown 

MTTR < 1 a 

• Septum wires burnt through 

• He safety valves of cryostats blown 

• Busbar/cables burnt 

• Holes in beam pipes 

S4 
Multiple loss of 
life 

Catastrophe • Should never happen! 

1 FIT = 1 Failure in 109 h 
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Risk assessment: 

How to define SIL levels? 

 When defining a safety function, e.g.: 

„Dump Magnet Energy when a quench occurs“, how 

reliable the function has to be? 

 S3: Damage so large that downtime >> 1d 

 A1: No personnel present when powering S.C. magnets! 

 G1: It is possible to prevent the magnet from quenching 

(e.g. observing temperature) 

 W2: Possibility for a quench is >5%, but <25% of 

operation time 

 SIL3 is necessary for achieving a safe quench 

detection and dump resistor activation, PFH<1x10-7 

failures/h. 

 

 Other example: PSS: “Deny user request to enter 

restricted area during beam operation.” 

 also SIL3, but with PFD<1x10-3 failures/demand. 

15 

  
Low demand [failure/request] High demand or continuous 

request [failure/h] 

  

Average probability of dangerous 

failure at request of the safety 

function 
Average probability of dangerous 

failure of the safety function 

SIL / PL PFDavg, min (>=) PFDavg, max (<) PFHmin (>=) PFHmax (<) 

4 / e 1,00E-05 1,00E-04 1,00E-09 1,00E-08 

3 / d 1,00E-04 1,00E-03 1,00E-08 1,00E-07 

2 / c 1,00E-03 1,00E-02 1,00E-07 1,00E-06 

1 / b 1,00E-02 1,00E-01 1,00E-06 1,00E-05 

Risk graph 
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Risk assessment: 

Magnets, busbars, current leads 

 Failures: 

 Quenches 

 Thermal runaways 

 Turn-to-GND short 

 Turn-to-Turn short 

 Most severe failures: 

 Quenches (destroys busbars or magnet coils) 

 Dipole: 

full beam could hit the E-Septum wires in ~1 ms 

 Quadrupole, Chrom. Sextupole, Res. Sextupole, 

Octupole: 

beam could hit the Halo collimators, E-Septum wires or 

external targets / detectors during slow extraction in ~1 ms 

 Chosen mitigations: 

 Magnet interleaving Quench Detection (QD) 

 Emergency dump for detected failures (started just before 

magnet energy dump) 

 Interlocks 

 Failsafe behavior: 

 ~99% reduction of risk 

 Already incorporated in hardware design (SIL3 for QD!) 

 Turn-to-Turn shorts only detectable during commissioning 

and pilot beam operation! 
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Risk assessment: 

Power Converters 

 Failures: 

 DCCT or control loop causes more or less current than set 

 IGBT shorts 

 Media (cooling water) or sensor failures 

 Primary Voltage supervision sensor failures 

 PE failures (dipoles, quadrupoles, septum 3) 

 Most severe failures: 

 Dipole PC: 

full beam could hit the E-Septum wires in ~1 ms 

 Quadrupole, Chrom. Sextupole, Res. Sextupole, 

Octupole, Radres. Quadrupoles PC’s: 

beam could hit the E-Septum wires or external targets / 

detectors during slow extraction in ~1 ms 

 Chosen mitigations: 

 Redundant DCCT in some cases 

 Emergency dump for detected failures (started just before 

magnet energy dump) 

 Interlock 

 Failsafe behavior: 

 ~92% reduction of risk 

 Still (minor) modifications in hardware design necessary 
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Risk assessment: 

RF acceleration system 

 Failures: 

 LLRF Amplitude control/DAC failure 

 LLRF DDS / Group DDS failure 

 Cavity GAP Arc ignition, shorts 

 Resonance frequency control failure 

 Driver / Power Amplifier failures 

 B2B Transfer unsynchronized 

 Media or sensor failure 

 50 Ohm Terminator failure 

 

 Most severe failure: 

 Gap arc ignition: 

At least a part of beam will hit cryo collimators (spiraling into 

it in around 1 ms), happens quite often 

 

 Chosen mitigations: 

 Emergency dump for detected failures 

 Interlock (for media or sensor failures) 

 Failsafe behavior 

 ~89% reduction of risk 

 Minor modifications in hardware/software design are 

necessary 
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Risk assessment: 

Injection/Extraction system 

 Failures: 

 Single kicker does not fire, voltage deviation 

 Single kicker fires unintentionally 

 E-Septum sparking 

 Most severe failures: 

 E-Septum sparking: 

full beam could hit E-Septum wires 

 Single extraction kicker does not fire / voltage deviation: 

beam can hit septum or HEBT / detectors / targets 

 

 Chosen mitigations: 

 Emergency dump 

partial beam loss can not be prevented 

 no warning time 

 up to ~30% beam loss when kicking in coasting beam 

during slow extraction  

 Low intensity pilot beam for optimizing settings 

 E-Septum has to be actively protected (wire supervision) 

 “Cleaning” of beam which remains after extraction kick onto the 

emergency dump. 

 Failsafe behavior: 

 89% reduction of risk 

 Further tracking studies will follow to identify and reduce risks 
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Risk assessment: 

Global/Local cryogenic system 

 Failures: 
 Valve or valve control failure 

 He supply/return line rupture or leak 

 Voltage breaker leakage or rupture 

 Valve bellow rupture 

 Compressor / pressure regulation failure 

 Most severe failures: 
 Voltage breaker leakage or rupture: Paschen limit, repair time 

 Valve bellow and He supply/return line rupture: long shutdown for 

repair 

 Most failures would result in quench, but this is detected by 

pressure / temperature sensors and QD. 

 

 Chosen mitigations: 
 Pressure readout, Emergency dump (started with magnet energy 

dump, which is more important) for fast processes 

 Interlock for slow processes 

 QA (Quality Assurance) for all weldings and QD (Voltage tabs) for 

all interconnections 

 Maintenance plans for valves 

 Failsafe behavior: 
 88% reduction of risk 

 Care has to be taken in design and read-out of insulation vacuum 

pressure (cold cathode gauges) – some failures have short rise 

times. 
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Risk assessment: 

Control system 

 Hardware, Software and Operators 

 Failures: 
 Wrong data delivered to device 

 Timing system does not trigger  all effects possible... 

 Slow extraction efficiency too low 

 Feedback systems (Orbit, TFS, LFS) fail (currently not calculated) 

 Most severe failures: 
 Software errors: full beam could hit anywhere 

 Physic model errors: full beam could hit anywhere 

 Operator thinks in the wrong direction: full beam could hit anywhere 

 Chosen mitigations: 
 Low intensity pilot beam for verifying optics, physics model and 

machine settings, intensity ramp up concept, locking of critical 

parameters at high intensities 

 BLM’s, Transmission supervision, Emergency dump 

 Optics check for machine setting parameters, Training for operators 

 Data check (read-back) of machine settings (cyclic every few 

minutes); Set and Actual Value - window comparison 

 Failsafe behavior 
 ~99% reduction of risk 

 Human factors still an issue 

 SCU and timing system already designed with very large MTBF 
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Risk assessment: 

Beam dynamics and others 

 Failures: 

 Beam instabilities (difficult to estimate correctly) 

 Beam in kicker gap 

 UHV pressure rise, vacuum leakage, FOD (objects in 

vacuum chamber – LEP, ESR, SIS18) 

 HEBT / Experiment note ready, EMC, Earthquakes, … (not 

calculated) 

 Most severe failures: 

 Beam instabilities 

 Cold UHV chamber leaks (long 

downtimes for repair!). 

 

 Chosen mitigations: 

 Emergency dump 

 BLM’s, cryo catcher current readout 

 Robot for searching “UFO”s 

 Failsafe behavior: 

 33% reduction of risk 

 One never knows what high energy / intensity or 

compressed beams do in real 

 Beam physics studies are ongoing 
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SIS100 risk assessment: 

Results  

33 

• Most severe (hard to detect at warm and long repair 

times): cold leaks / defects. 

 

• Heavy ion beam power of SIS100 is high enough to 

damage sensible equipment (e.g. e-septum). 

 

• All devices are designed self-protecting when 

internal failures occur, but not necessarily have 

optimum behavior with respect to the beam. Work is 

progressing to improve this. 

 

• For emergency dump: Beam losses caused by 

spurious errors (e.g. power converter problems, RF 

failures, quenches, ...) as well as dynamically 

unstable beams can be mitigated effectively by the 

emergency dump system. 

 

• By failsafe concept, up to 85% of the total failures in 

time can be detected or mitigated. 

 

• Given 6,000 h operating hours per year, an 

availability of 66% (3,957 h/a) is currently 

estimated. 
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Comparison of SIS100 with CERN PS 

Similarities SIS100 (gt-

shift settings) 

PS 

Particles per cycle 2*1013 3*1013 

Injection energy / GeV 4.0 1.4 

Extraction energy / GeV 28.8 20.0 

Stored energy Inj. / kJ 12.7 6.8 

Stored energy Extr. / kJ 91.1 96.9 

Max. beam radius Inj. / mm 29 29 

Max. beam radius Extr. / mm 12 8 

Min. beam radius Inj. / mm 3.6 17.7 

Min. beam radius Extr. / mm 1.5 5.6 

Differences SIS100 PS 

Magnet type SC NC 

Beam pipe vacuum chamber 

thickness / mm 

0.3 1.5 

Heavy ion beam energy / kJ 51.5 ~7.1 

for Proton operation: 

• For p operation, CERN PS and SIS100 similar in energy and spot size (=damage potential); for heavy 

ions, SIS100 is more dangerous... 

• No major accidents in PS due to beam losses 

• Spot size in SIS100 even larger with gt-jump settings 

 

• LHC (one beam): 362 MJ => 4 000 times more energy! 
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2.5*1013, 29 GeV Protons 
energy deposition in the dump 

 After an absorber length of 1 m: 

 hardly any primary protons left 

 homogeneous energy distribution by 

secondaries 

 Temperature values well below the 

sublimation/melting points 

 Energy deposition values in upper and lower 

coils identical within 30 % 
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5*1011 U28+, 2.7 GeV/u 
energy deposition in the dump 
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distance along z-axis (cm) 

E
 [J

/c
m

3] 

Graphite dump (20cm) Tantalum absorber (225 cm) 

projections in YZ plane, 

averaged over x  view from 

the top 

projections in XY plane,  

averaged over z 

 view along the beam direction  

σy=0.3cm σy=0.6cm 


