

Some ideas/concepts for: FAIR Transmission & Performance Monitoring — first draft —

Ralph J. Steinhagen

with input from: S. Damjanovic, D. Ondreka, S. Jüllicher, T. Radon, I. Strasik

- Beam Transmission Monitoring Definition & Time-Scales
- Required tolerances

 or "How much losses are acceptable"
 - Optimisation of particles on targets
 - "Every ion lost in the accelerator is an ion lost for physics"
 - One* of the key tuning parameters of the accelerator chain
 - ALARA minimisation of activation and radiation permit compliance
 - How much is 'reasonable'?
 - Minimising risk of combined machine protection failures
 - Less stress on MP system ↔ more clear cut between normal and anomalous operation

C. Omet's upcoming FC²WG MP talk

- What could be achieved
 - or "why FCTs & DCCTs alone may not be sufficient"
 - proposal to include BLMs for fast in-cycle losses + radiation monitors for slow/absolute loss measurements

§§ Radiation Permit – limits on total dose per year (facility & external)

online dosimetry (abs. reference)

§§ Radiation Permit – limits on total dose per year (facility & external)

- Main usage: reject (dump) beam already at low-energies & low-intensities in pre-injectors before it worsens machine operation/performance upstream
 - 1. online: one of the performance indicators used to tune the accelerator
 - 2. prevent recurring (avoidable) losses leading to unnecessary activation
 - 3. offline: documentation of machine performance (prediction of future runs/performance)
 - 4. exp. data analysis (e.g. primary → secondary RIB conversion)
 - 5. large losses indicative that other beam parameters may also be out of tolerance
 - e.g long. or transverse emittance blow (halo formation)
- To note: the BTM is a priori not part of the (fast) MP system, however, still needs to run reliably & continuously

- Possible BTM actions:
 - A) Inhibit next injection for a given beam production chain (via timing system)
 - Ideally: should be compatible with SIS18's 3 Hz 'booster mode' ↔ '<100 ms' total response time of BTM
 - KISS Keep it Simple and Safe (with an eye on operational availability):
 - experience with by times flaky injector/source performance
 - → may need to consider/keep the option of 'once doesn't count' (aka. "einmal ist keinmal") policy for SIS18 injection (only)
 - target of '100 ms' is not a hard real-time requirement: OK if achieved with 98-99% probability & hard limit of '1 s'
 - keeps option of SW implementation open (RT Linux)
 - B) Inhibit extraction (via timing system):
 - option: repeat cycle
 - faster responses required: ~ < 100 ms
 - C)'Fast Beam Abort'
 - probably too stringent as default \leftrightarrow (too?) tight requirement on response time and current transformer sensitivity
 - N.B. < ~1 ‰, possibly too tight based on LHC experience (easier case) & assumption: beam loss continuous after initial detection

FAR Beam Transmission Monitoring (BTM) Examples - Rules

- · Four transmission loss scenarios + associated rules
 - A) Multi-turn injection/accumulation
 - Essentially: UNILAC → SIS18 (fast), SIS18 → SIS100 (slower)
 - Monitoring goal: 'J I_{FCT-TK/HEST}(t) dt' vs. 'I_{fct/dcct}@ start ramp'
 - easier if using $<I_{FCT-TK}(t)>$ but more precise using $'I_{FCT-TK}(t)'$ and gating on selected injection time window
 - B) Losses due to RF capture/ramp/instabilities
 - · transition crossing/instabilities/space-charge
 - Monitoring goal: 'I_{fct/dcct}@ start ramp' vs. 'I_{fct/dcct}@ end ramp/before (fast) extraction'
 - probably non-issue and mainly dominated by instrument systematics
 - C) Fast extraction
 - Monitoring goal: 'I_{fct/dcct}@ end ramp' vs. 'I_{fct} at first location in HEST/HEBT'
 - probably non-issue and mainly dominated by instrument systematics
 - D) Slow extraction
 - Monitoring goal: 'I_{fct/dcct}@ end ramp' vs. 'J I_{fct??} dt in HEST/HEBT'
 - Monitoring tool/instrument not clear (↔ counter calibration)

FAR Beam Transmission Monitoring (BTM) Functional Requirements

- additional requirements:
 - Global + local trending (inj, ramp, extr): <min, max, mean ± stdev, median, ...>
 - stimulate some "healthy" BTM optimisation competition: add. traces for 'best cycle' for given beam configuration and 'worst cycle' (e.g. over last hour/day, excluding injector failures)
 - Post-processed & predictive thresholds:
 - normalised per process ('A)', 'B)', 'C)', resp. 'D)')
 - normalised per machine $(BTM_{'A)'}*BTM_{'B)'}*BTM_{'C)', resp. 'D)}$
 - absolute w.r.t. total particle lost (\leftrightarrow activation, radiation permit)
 - predictive losses during intensity ramp-up (e.g. prevent 'low-transmission, low-intensity' -> 'low-transmission, high-intensity' transition)
 - Archiving (in addition to direct logging from FCT/DCCT devices)
 - re-use common archiving system (under preparation)
 - Data retention for at least 10 years ↔ needed also from experiment/legal point of view
 - group data into one system that re-publishes the data to the timing system (interlock), MCR, archiving system, ...
 - Threshold, settings, reconfigurability via LSA, ..., details:
 - S. Jülicher, G. Fröhlich, "Detailed Specification of [..] 'Beam Transmission Monitor System' " 2012-08-29, F-DS-C-12e, V3.1

FAR Beam Transmission Monitoring (BTM) S. Jülicher et al: Controls Specification

Figure 1: System Overview

S. Jülicher, G. Fröhlich, "Detailed Specification of [..] 'Beam Transmission Monitor System' "2012-08-29, F-DS-C-12e, V3.1

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Ralph J. Steinhagen, r.steinhagen@gsi.de, 2015-10-07

FAR Beam Transmission "Gretchen Frage"

"... how much losses are acceptable?"

- In a perfect world: none
- In the real world: cannot avoid certain beam losses
 - operating close to the space-charge limit
 - Touschek scattering
 - finite machine acceptance/aperture
 - finite vacuum/rest-gas interactions
 - optics errors: beta-beat, dynamic aperture, ...
 - ...
- Why do we care about this now:
 - setting realistic goals, expectations and limits
 - gain experience for high-intensity operation with low-intensity beam
 - defines required accuracy, resolution and robustness of beam instrumentation
 - FCTs, DCCTs, BLMs, radiation monitors, ...
 - defines time-scales we have to act if transmission gets worse

"uncontrolled beam losses of 1 W/m should be a reasonable limit for hands-on maintenance" [Ref] N.V. Mokhov and W. Chou, The 7th ICFA Mini-workshop on High Intensity High Brightness Hadron Beams, USA, 1999.

1 W/m \rightarrow 6.2×10⁹ protons/(m·s) of energy 1 GeV (uniformly distributed)

Simulation of the steel beam pipe residual activity induced by beam losses of 1 W/m

- Simulation tool: FLUKA
- Irradiation time: 100 days
- Cooling time: 4 hours

Effective dose rate at 30 cm is about 1 mSv/h

• possibly may need to accept 1 mSv/h due to unavoidable losses at e.g. septa, collimators, ...

· However, should

not take this as a 'carte blanche' that high losses are OK
 ↔ ALARA principle (As Low As Reasonable Achievable)

• aim at much lower global target < 0.1 mSv/h resp. < 0.1 W/m

FAR Ivan Strasik @ HIC4FAIR'2015: Beam Loss Criteria for Heavy Ions

Simulation performed by using FLUKA Beam loss criteria: A_p/A_i

 A_p – activity induced by 1 W/m of protons A_i – activity induced by 1 W/m of ions

Primary ions (E = 1 GeV/u)	Equivalent to 1 W/m [ions/(m·s)]		
¹ H	6.2×10 ⁹		
⁴ He	1.6×10 ⁹		
¹² C	5.2×10 ⁸		
²⁰ Ne	3.1×10 ⁸		
⁴⁰ Ar	1.6×10 ⁸		
⁸⁴ Kr	7.4×10 ⁷		
¹³² Xe	4.7×10 ⁷		
¹⁹⁷ Au	3.2×10 ⁷		
²³⁸ U	2.6×10 ⁷		

• SIS100 beam parameters and equivalent to 1 W/m (number of particles)

Beam	Injection energy	Extraction energy	1 W/m equivalent (injection)	1 W/m equivalent (extraction)	Beam intensity
Protons	4 GeV	29 GeV	1.5×10 ⁹	2.1×10 ⁸	2×10 ¹³
⁴⁰ Ar ¹⁸⁺ ions	1.6 GeV/u	12 GeV/u	1×10 ⁸	1.3×10 ⁷	1×10 ¹¹
²³⁸ U ⁹²⁺ ions	1.3 GeV/u	10 GeV/u	2×10 ⁷	2.5×10 ⁶	1.5×10 ¹⁰

• From the beam loss maps tolerable beam losses* (% of the beam) can be identified.

Beam	Loss criteria (injection)	Loss criteria (extraction)	Tolerable losses (injection)	Tolerable losses (extraction)
Protons	1 W/m	1 W/m	10 %	5 %
⁴⁰ Ar ¹⁸⁺ ions	2 W/m	1 W/m	30 %	6 %
²³⁸ U ⁹²⁺ ions	4 W/m	2 W/m	20 %	10 %

Caution: '1 W/m' is only indicative! existing operation, shielding and radiation permit limits proton losses to <3% @ 29 GeV and nominal intensities! → should aim to be significantly below that limit (ALARA)

*for comparison: CERN-PS: 4-8% losses achieved (data courtesy R. Steerenberg, 19th March 2012) Caution: for protons this implies near-perfect two-stage collimation system

*

FAR Beam Transmission & ALARA

"As-Low-As-Reasonably-Achievable" Losses – a buzz-word?

• 'golden standard': should exhaust reasonable common operation practices of controlling beam parameter known to induce particle loss ("KISS in mind" – 'actual risk mitigation' vs. 'operational availability'):

Low-intensity beams:

A. Extraction/Injection Matching

- first-turn trajectory steering (BPMs),
- energy matching (BPMs & Schottky),
- coarse collimation (IPMs) (removing excessive tails at low energy before propagating them to higher-energy machines)
- bunch-length to bucket-space matching (FCTs)

B. Closed-Orbit Cycle-to-Cycle Feedback (BPMs)

- aperture optimisation (coarse, circulating beam)
- C. Tune & Chromaticity Correction (BPMS, BBQ)
 - optimises space charge, ΔQ spread, dyn. aperture, beam stability
- D. Emittance (blow-up) Monitoring (IPMs, FCTs)

High-intensity beams:

All on the left, with tighter limits, plus

- E. Optics Correction
 - Inj./extr. mismatch ($\Delta\beta$, $\Delta\mu$) correction (ϵ -blow-up optimisation)
 - ring beta-beat correction (aperture opt. & linearises/restores symmetry of the optics → suppresses driving terms)
 - detailed aperture optimisation (tune β bottlenecks)
- F. Detailed Collimation (e.g. 2-stage for protons)
 - see Ivan Strasik's talk @ HIC4FAIR'2015
- G. Quantitative slow-extraction optimisation
 - eval. 'Hardt condition', step-width measurement, ...

• frequent cause for loss changes

for discussion: 'acceptable losses' := losses remaining after having performed above steps

Η. ...

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Ralph J. Steinhagen, r.steinhagen@gsi.de, 2015-10-07

FAIR BTM using only FCTs & DCCTs 🖪 🚍 💼

- May not achieve required BTM using FCTs & DCCTs alone, or would need to impose unrealistic BI design parameters
- Underlying measurement systematics
 - Coarse spacial resolution: locate losses per accelerator/transfer-line scale but only limited diagnostics where and how the particles are being lost
 - N.B. more challenging to measure pulsed RF compared to DC currents
 - permille-level resolutions can be achieved for stable beam parameters but absolute accuracy is typically limited to 1-3%, some dependencies:
 - electronic/reference-source temperature
 - EM-Interferences, cable-reflections, ...
 - RF bunch phase (FCTs, needed integration)
 - finite magnetic quantisation of ferrite core (DCCTs, weiss-domains)
 - Bunch-length (notably BMCS @ SIS100), beam position, ...
 - May improve upon some of these limitation but some are may be unreasonable below the 1% level (cost vs. reliability vs. performance → R&D, some examples)
- Real-World operational problem:
 - FCT/DCCT transmission measurement accuracy limited to about 2-3%
 - ALARA (activation) transmission control aimed ideally on the sub-% level

 "Re-discovered" expected position dependence while doing a ±4 mm orbit bump around LHC-Pt4 (RF, BI insertion):

Usually suppressed by ±200 um orbit stability during regular operation

§§ Radiation Permit – limits on total dose per year (facility & external)

- Include BLMs and RadMons as complementary input¹ to BTM system; operational procedure/scenarios:
- Low-intensity beams:
 - cycle-to-cycle time scale: mainly rely on FCTs & DCCTs and tune beam parameter to transmissions on 2-3%-level around established 'acceptable loss' scenario
- High-intensity beams (steps maskable by SBF):
 - use FCTs & DCCTs as for low-intensity beams
 - In addition: minimise global/localised losses using integrated BLM signals
 - N.B. qualitative not quantitative process, i.e. no hard quantitative primary-loss-to-BLM transfer function (holes in coverage, physics uncertainties, ...)
 - However, some experience with BLM vs. FCT calibration at FNAL
 - On larger time-scale: cross-correlate FCT/DCCTs & BLM-based loss optimisation with absolute 'd/dt(RadMons)' reference (diagnostics/calibration to be worked out example FNAL: ∫ Σ(BLM) dt := ∫ Σ(RadMons) dt)

¹BLMs & RadMons also helps localising transmission losses and assessment w.r.t. uncontrolled and losses

FAR S. Damjanovic: Energy Deposition in Coils vs. IC-type BLM Signals

If quenching would occur, it would first be the two innermost coils of the Sextupole/ Steerer:

maximum energy deposition E_d^{max}=4.5×10⁻¹³J/cm³/(lost primary)

max P _{dep} [W/cm³]	BLM signal [pA]				
	BLM1	BLM2	BLM3	BLM4	BLM5
1×10 ³	3900	8×10 ⁴	3.7×10 ⁵	3×10 ⁵	1.3×10 ⁵

(N.B. LHC IC-BLMs lower sensitivity threshold threshold: ~10 pA) $I_{det} \sim 5 \cdot 10^4 \text{ ions/s}$

largest signal downstream of the cryocatcher module, at the position of BLM3

GSI Helmholtzzentrum für Schwerionenforschung GmbH

FAR S. Damjanovic: Quench-prevention threshold for different ion beams and energies

Quench-prevention thresholds the same for all ions/energies considered

(N.B. LHC IC-BLMs lower sensitivity threshold threshold: ~10 pA)

FAR Possible BLM integration in the MCR: CERN PS – BLM display

FAR Possible BLM integration in the MCR: FNAL example

Courtesy Bruce C. Brown, FNAL

(example FNAL: $\int \Sigma(BLM) dt := \int \Sigma(RadMons) dt$, details tbc.)

FNAL reference

FAR Beam Transmission Monitoring (BTM) Open Technical Questions

- Signal Sources:
 - Ring-FCTs, Ring-DCCTs + all (??) TK, HEST, HEBT FCTs?
 - Which Counters? Intensity signal from experiments (Calibration?)??
- Beam Current Normalisation (DCCTs)
 - Ideally should provide normalised currents/particle intensities
 - Performed on 'FESA front-end' or already on 'DAQ-HW'?
 - LSA function driven (settings)? (easy Day-I SW solution)
 - Dedicated SDDS? (better for HW solution)
 - Beam-based- f_{rev} generation? (good for commissioning/in case of problems)
- Total 'FCT/DCCT → BTM → Injection Inhibit' Latency
 - Is a soft real-time dead-line < 100 ms (hard limit: < 1 s) achievable by pure SW?
 - CMW subscription? Dedicated SW-Link between FCTs/DCCTs-FE and BTM?
 - Is a HW solution necessary (ala. UNILAC BTM)?
- Beam-Presence-Flag (BPF) & Setup-Beam-Flag (SBF)
 - certain BTM features are similar to BPF & SBF, however, 'SBF' is MP sensitive (dedicated HW solution?)
 - Interface for BPF (FCT derived?) and SBF (DCCT derived?) to Fast-Abort/MP-System?

FAR Beam Transmission Monitoring (BTM) & Emittance Monitoring

- ... more complex subject but equally important to beam transmission control
- "Good" vs. "Bad" intensity:
 - particles outside the acceptance of up-stream accelerators
 - Mechanical and dynamic aperture!!
 - halo-particle interactions with experiment's target \rightarrow background
 - prone to be lost due to or causing beam instabilities
 - "dark currents" \rightarrow RF capture losses
 - abort-gap beam population \rightarrow fast extraction particle across many elements
 - satellites around main bunches (inherent to BCMS) \rightarrow impact on physics with bunched beam

- Beam Transmission Monitoring
 - Performance: key accelerator tuning parameter & "Every ion lost in the accelerator is an ion lost for physics"
 - ALARA minimisation of activation and radiation permit compliance
 - Minimising risk of combined failures & reducing MP stress before losses become an MP/operation issue
- Definition of 'acceptable losses setting realistic goals, expectations and limits
 - 'In a perfect world: none' vs. 'In the real world: cannot avoid certain beam losses'
 - should keep (well) below upper limit given by facility's radiation permit and activation considerations
 - for discussion: 'golden standard of acceptable losses' := losses remaining after having applied reasonable common operation practices of controlling beam parameter known to induce particle loss:
 - Extr./inj. matching, cycle-to-cycle Orbit-FBs, Q/Q' correction, ϵ -blow-up monitoring \rightarrow optics correction, detailed collimation, slow-extraction, ...
- Real-World operational problem:
 - 'FCT/DCCT accuracy limited to about 2-3%' vs. 'ALARA transmission control aimed ideally on the sub-% level'
 - → proposal to include BLMs for fast in-cycle losses & RadMons for slow, absolute loss measurements
 - N.B. BLM thresholds to be used as relative indicators w.r.t. given setup reference
- Some ToDos (dedicated task groups): CO architecture, SW/HW implementation, CSCO and BI system interfaces, ...

Appendix

Hazard: a situation that poses a level of threat to the accelerator. Hazards are dormant or potential, with only a theoretical risk of damage. Once a hazard becomes "active": incident / accident. Consequences and possibility of an incident interact together to create RISK, can be quantified:

RISK = Consequences • Probability

Related to accelerators

- Consequences of an uncontrolled beam loss
- Probability of an uncontrolled beam loss
- The higher the **RISK**, the more **Protection** is required

- ... to avoid (yokeru) inadvertent errors (poka)
- ... industrial processes designed to prevent human errors
 - Concept by Shigeo Shingo: 'Toyota Production System' (TPS, aka. 'lean' systems)
- common mistakes, procedural errors, etc. affecting machine performance
- Real-World Examples:
 - Polarity protection of electrical plugs (e.g. phone, Ethernet cable)
 - Procedures: e.g. ATM machine: need to retrieve card before money is released (↔ prevents missing card)

Reconstruction Requirements I/II Typical WCM response – Low-Frequency Base-Line

• Naive approach: Fourier Integral definition for ' ω :=0': $F(\omega)$

$$F(\omega) = \int_{-\infty}^{+\infty} f(t) e^{-i\omega t} dt$$

However: DC information is in-accessible:

- Intrinsic AC-coupling \rightarrow requires base-line restauration
 - typ. 1rd-order zero-pole IIR filter works fine on %-level
 - Particularly important for filling patterns with many bunches (LHC: <2808)
 - observed sub-%-level drifts related bunch-filling pattern, bunch charge,...

III. Base-Line Restoration – SNIP Algorithm Example PS WCM Signal

Satellites have been deliberately produced for better proof-of-principle:

