
Expected Machine Performance: Options for parallel operation (30')

Ralph J. Steinhagen

with input from: D. Ondreka, S. Reimann, P. Schütt, P. Spiller

- GSI facility
 - 2 + 1 accelerators
 - 20 experimental areas
- Parallel operation
 - UNILAC, SIS18, ESR independent
 - 3 different ion species
 - 5 parallel experiments
- Experiments demand high flexibility
 - Variation of beam parameters (daily)
 - energy, intensity
 - extraction type
 - number of bunches
 - Change of beam sharing (daily)
 - Switching of ion species (weekly)
 - Adjustment of schedule (monthly)

FSR

Super Cycles at GSI: SIS18

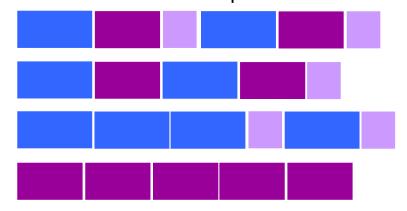
- Cycles are stand-alone
- Template determines
 possible execution sequences
- Beam requests determine actual execution sequence

Time honored, but two major flaws:

A) Unpredictable magnetic history

- frequently leads to beam degradation
- empty cycles needed, wasting duty cycle

B) Next cycle not known

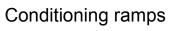

- time for preparing transfer lines lost
- sometimes leads to beam degradation
- unnecessary idle time for long chains

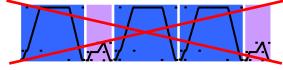
Needs to be changed for FAIR...

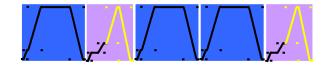
Super cycle template

Possible execution sequences

Dynamic Magnet Effects

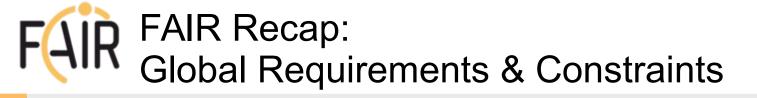

Mostly iron dominated magnets


- hysteresis (memory) effects
- eddy current effects
- reproducible for known history
- impact on cycles:
 - critical for multi-turn injection & slow extraction
 - less critical for bucket-to-bunch transfer & fast-extraction


Possible procedural cures

- choice of cycle sequence
 - A) periodic patterns to fix history
 - B) conditioning ramps to avoid hysteresis (e.g. ESR low rigidity experiments)
 - C) conditioning cycles for clean history (ie. for PP)
- modification of settings during setup
 - parameters for compensation of hysteresis
 - add. dead-time for eddy-current decay
 - field corrections based on beam-based feedbacks measurements

Hysteresis compensation



Conditioning cycles

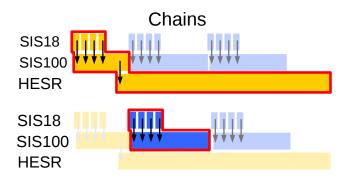
and

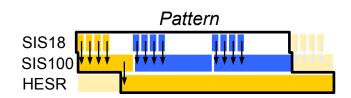
- Much larger facility, cannot reliably extrapolate from present 'UNILAC→SIS18→ESR' operation to requirements for FAIR (9+ resp. 13 accelerators, higher/unsafe intensities, more users)
- Will be in a constant flux of frequent adaptations to new cycles/beam parameters, etc. present estimate:
 - avg. experiment run: ~ 1-2 weeks + many new storage rings and transfer lines with high(er) complexity → machine setup time-scale
 - high-intensity operation requires more and better fine-tuning
 - dynamic vacuum, activation & machine protection (mainly septa, instrumentation, etc.)
 - limited operator resources: 4-5 (beam operation) + 1 (infrastructure, cryo)
- → need to be smart and develop an efficient commissioning procedure, training and tools to facilitate fast turn-around and maintain (or improve) present operational efficiency

₹ Beam Production Chains & Patterns 📭 🟣 📑

Beam-Production-Chain:

- organisational structure to manage parallel operation and beam transfer through FAIR accelerator facility
- defines sequence and parameters of beam line from the ion-source up to an experimental cave (e.g. APPA, CBM, SuperFRS, ...)
- definition of target beam parameters (set values): isotope, energy, charge, peak intensity, slow/fast extraction, ...

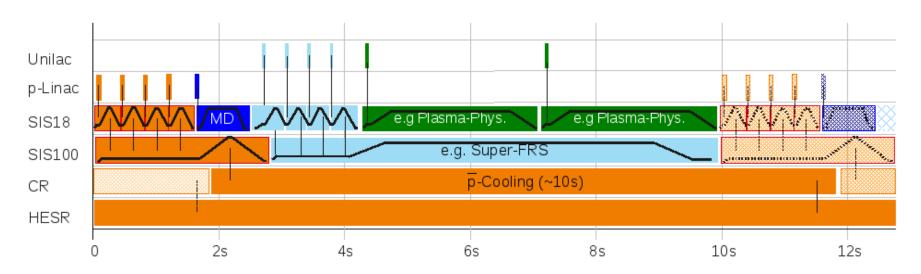

Beam Pattern:

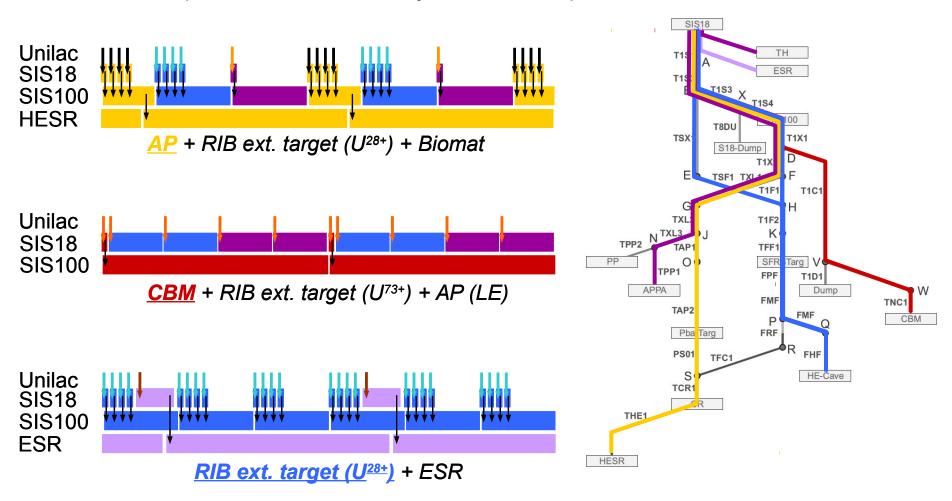

- grouping of beam production-chains that are executed periodically
- can be changed of pattern within few minutes (target, requires automation for beam-based retuning)

→ decouple beam request from magnetic cycle

- now: dynamic user beam request → magnetic cycle → beam injection
 - random magnetic cycle ↔ non-reproducible hysteresis
- FAIR: pre-programmed magnetic cycle + dynamic user beam request → beam injection
 - optimises magnetic pattern

 → reproducible hysteresis
 - N.B. beam extraction still programmed ad lib by experiments

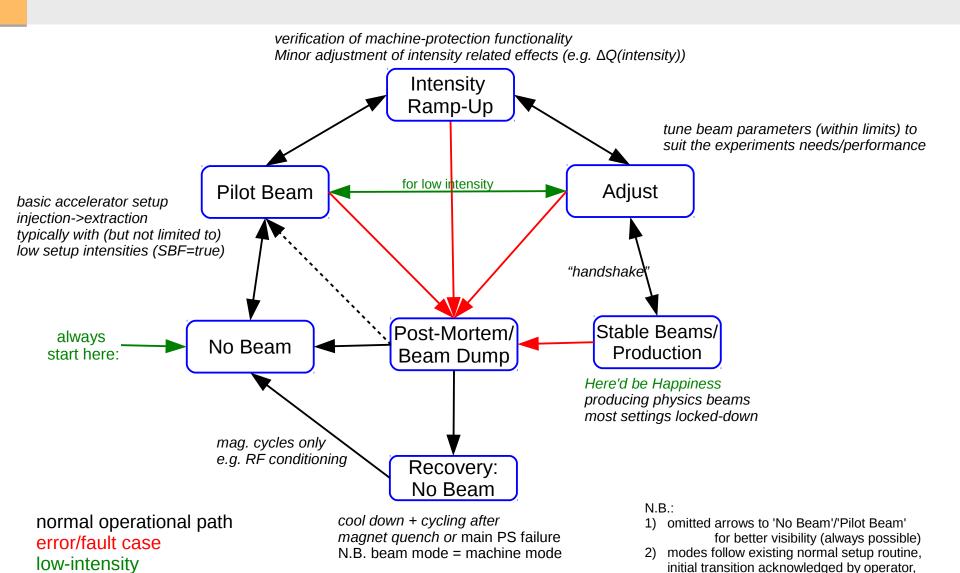



- Periodic beam patterns, dominated by one **main** primary experiment
 - example: p-production in HESR
- Secondary experiments fill gaps to optimise facility/accelerator duty cycle
- additional cycles to setup future beam requests or test new accelerator concepts or parameter (working points)

Periodic beam patterns, dominated by one *main* experiment:

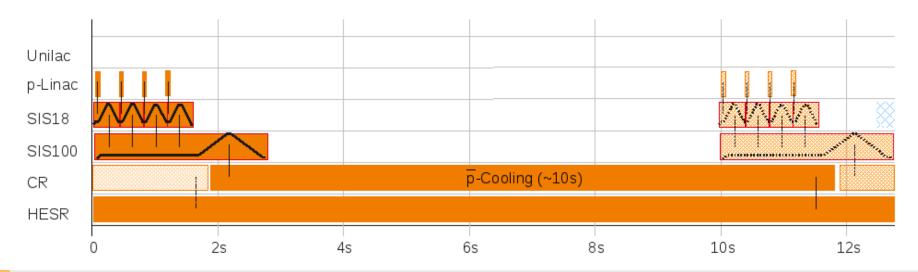
- FAIR will be very flexible w.r.t. parallel operation scenarios.
 - mostly defined by UNILAC, SIS18, SIS100 & HEBT
- Some limitations to flexibility:
 - UNILAC: one high-intensity source + 2 low(er) intensity sources
 - · limits choice of ions running in parallel
 - · reliability in case of failures, repairs, or upgrade scenarios
 - · p-linac would provide an valuable complement
 - high-intensity ion in || to high-intensity protons operation
 - healthy redundancy for UNILAC
 - ..
 - SIS18/SIS100:
 - limitations w.r.t. peak power consumption
 - · exclusivity of laser cooling experiments
 - cycle-to-cycle movement of 2-stage collimation system → 1.5 collimation system (single foil, one-sided collimator + multiple-turns)?
 - ..
 - HEBT:
 - invasive diagnostics (screen, grids, MWPC), devices that cannot be (re-)moved cycle-by-cycle, ...
 - impact on parallel machine setup
 - ...
 - Super-FRS, CR & HESR
 - slow w.r.t. rigidity changes (Super-FRS: ~ 15 min. H. Weick, yesterday)
 - polarity changes (p̄ ↔ ion operation)

- FAIR High-Intensity Targets: → more details: V. Kornilov's & C. Omet's talk
 - Accelerator operation does not become easier with higher intensities!
 - 10-100 x higher intensities & ~6 x higher energies than present GSI facility
 - beam becomes more sensitive to:
 - beam parameter changes: tune, orbit, chromaticity, optics errors, machine non-linearities, ...
 - dynamic vacuum effects (higher losses)
 - magnet hysteresis → may change tune/orbit working point & impact slow extraction/losses
 - Machine Protection = 'Investment Protection'
 - minimise risk of beam induced equipment damage
 - minimise accelerator activation
 → ALARA
- Control of particle losses becomes important
 - more precise monitoring and control of machine parameter
- Limits setup of new experiment in parallel to/and high-intensity experiments
 - use of intercepting devices in common transfer lines & rings
 - e.g. beam screens, Faraday cups, ...
 - change of beam parameters (intensities, rigidity, slow/fast extraction)
 - change of beam pattern/cycle structure → aim at keeping a reproducible machine



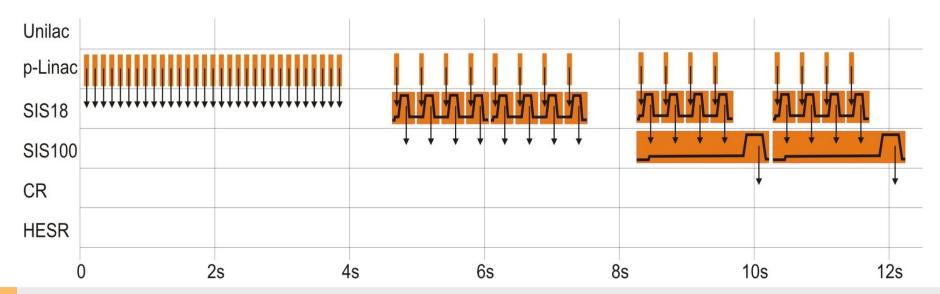
Additional measures for safe and reliable high-intensity operation:

- Pilot-Beam Concept:
 - new injection into an empty/untested machine must always be preceded by a pilot (ie. low-intensity) beam to validate injection, orbit, Q/Q', ... extraction
 - rationale: prevent "discovering" failed HW, bad settings with (potentially un-safe) high-intensities
- Intensity-Ramp-Up Concept:
 - Highest-intensities (> ~1010 ppb) only after successful intensity ramp-up
 - Need to verify beam parameters after every major cycle (hysteresis) or setting changes (Q/Q' working point, optics)
 - rationale: staged verification of intensity-related parameters, shift of working points,
 settings and systems (ie. better to discover/analyse/mitigate losses at low than high intensities)
- Additional concept: 'Beam-Presence-Flag' & 'Setup-Beam-Flag'
 - improves machine availability for low-intensity (safe masking of interlocks) while guaranteeing safety for high-intensity operation
 - For details see: http://fair-wiki.gsi.de/FC2WG/


subsequent driven automatically by sequencer

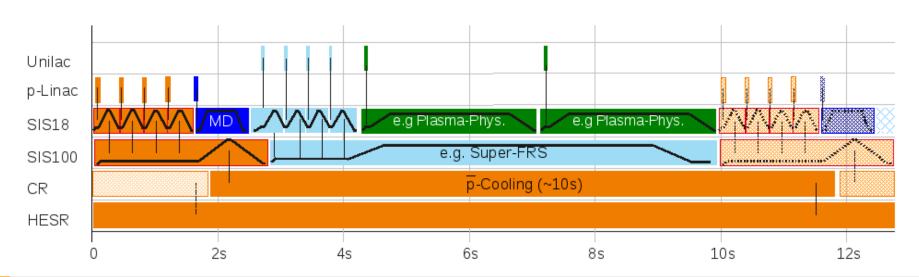
Setup of Primary Experiment example: p-Production

- Start with primary experiment → move through chain, one accelerator at a time
- First step Beam Mode: Pilot Beam
 - Getting pilot/low-intensity beam through the accelerator chain
 - basic accelerator setup: injection->extraction, typically with (but not limited to) low setup intensities (SBF=true)
 - N.B. typically an iterative tuning process to get the actual beam parameters to their theory values
- Option I: initialize complete beam production chain, fixed beam pattern, starting with similar or previous magnetic cycle reference
 - e.g. from previous experiment run, other ion species with same rigidity, etc.



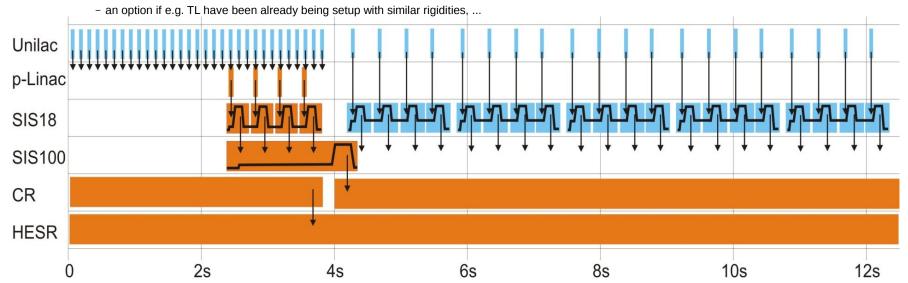
Setup of Primary Experiment example: p-Production

- First step Beam Mode: Pilot Beam
 - Getting pilot/low-intensity beam through the accelerator chain
 - basic accelerator setup: injection->extraction, typically with (but not limited to) low setup intensities (SBF=true)
 - N.B. typically an iterative tuning process to get the actual beam parameters to their theory values
- Option II: higher repetition rate for injector tuning, e.g. multi-turn injection in case of new rigidity, ion species, injection settings, etc.
 - dedicated setup for primary: optimises/minimises time spend using interceptive devices or interference with secondary experiments
 - beam dumps available behind SIS18 and SIS100, p-Linac runnin at maximum repetition rate



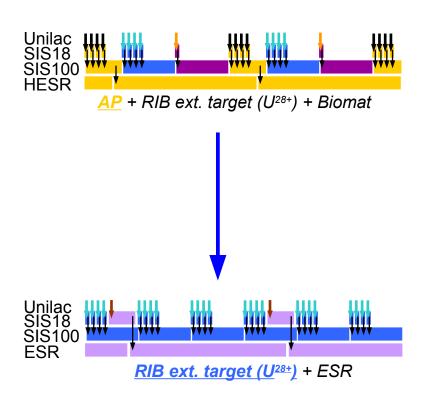
Setup of Secondary Experiments example: p-Production + CBM & Super-FRS

- Second step Beam Mode: Intensity-Ramp-Up
 - verification of machine-protection functionality, (minor) adjustment of intensity related effects (e.g. ΔQ(intensity))
- Add magnetic cycles of other (potential) secondary experiments ↔ account for hysteresis effects early on
 - Example: U28+ (or similar beams) for CBM and SuperFRS
 - N.B. initially cycles can/will run 'empty' (ie. w/o beam)
- Need to repeat 'Intensity-Ramp-Up' whenever secondary experiment or beam pattern changes
 - e.g. change from U28+ → Ni, N, Xe, ...



Setup of Secondary Experiment example: CBM

- Exploit advantage of two Linacs:
 - better availability w.r.t. machine failures, maintenance, upgrade scenarios, etc.
 - commissioning of UNILAC does not interfere with p-Linac → could do U²⁸⁺ beam tuning between the proton pulses
 - · but: limited/no parallel commissioning of different ion species in UNILAC
- However
 - proton beam may be disturbed due to hysteresis effects → should aim at keeping fixed pattern in SIS18/100
 - sensitive device protection from high intensity proton beam → limited: Pilot Beam & Setup-Beam Intensities
 - But remains an option if:
 - A) new protons & ions experiments are setup in parallel
 - B) ions are setup in parallel without using intercepting devices in TL/rings and without large changes in rigidity, tune, Q' etc.



FAIR Change of Beam Pattern

... an operational necessity

- Techniques minimise hysteresis exists but cannot guarantee that changes are transparent for high-intensities
 - ie. intensity dependence of working point (injection/extraction orbit, tune, injection, ...)
- Change of working point potentially dangerous or induce heavy losses
 → necessity of beam intensity ramp-up (pilot beam → re-validate → ...)
 - possible consequences:
 - small hysteresis effect
 → can be fast (little/no retuning)
 - large hysteresis effect
 → may need substantial re-tuning

FAIR Malfunctions & Responses

Common malfunctions

- - e.g. RF transients (sparking), increase of beam loss (e.g. through bad settings)
- Category II: minor HW device failures ↔ blocks only selected beams or est. few minutes to few hours recovery time
 - e.g. correctors failures, septa sparking, ...
- Category III: major failure ↔ blocks all beams or est. 1 up to few days recovery time
 - main dipole, quadrupole or sextupole failues (quench, MPS fault, ...)
- Possible responses (underlying constraint: keep magnetic hysteresis as long as reasonably possible):

for Category I:

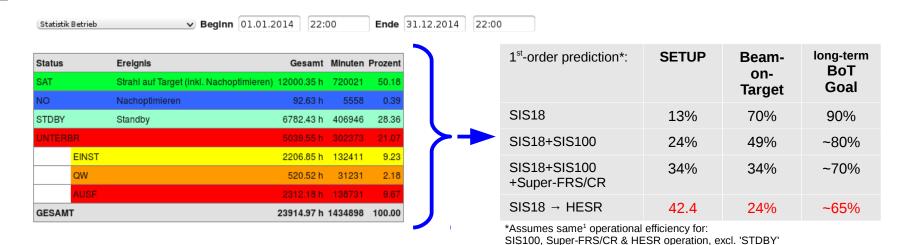
dump beam & inhibit inj./extr., but continue magnetic cycle → assess malfunction scope, then

- either (1st time): reset HW, reinject and verify with <u>last</u> beam intensity (~1 cycle) → OK? → 'Stable Beams'
- or (2nd time): reset HW, re-inject and verify with <u>pilot</u> beam (~1 cycle) → intensity-ramp-up (~2-3 cycles, if necessary) → OK? → 'Stable Beams'
- or: re-classify as 'Category II'

for Category II:

- dump beam or inhibit inj./extr., but continue magnetic cycle → assess malfunction scope, then
- either: reset HW, re-inject with disabled device (if possible)
 → verify with <u>pilot</u> beam (~1 cycle) → intensity-ramp-up (~2-3 cycles, if necessary)
 → OK? → 'Stable Beams'
- or (longer recovery/tuning): switch to SIS18/100 setup beam dump → as above

or: re-classify as 'Category III'

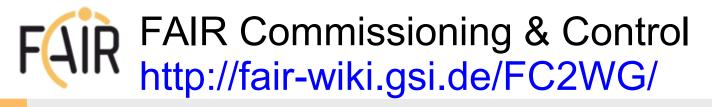

for Category III:

- Dump beam & inhibit inj./extr., stop magnetic cycle in corresponding machine, initiate (quench) recovery procedures
- Initially: continue with pattern in preceding machines
 (→ availability of || exp.)
 → assess scope of malfunction
- Change facility to new beam production chain pattern

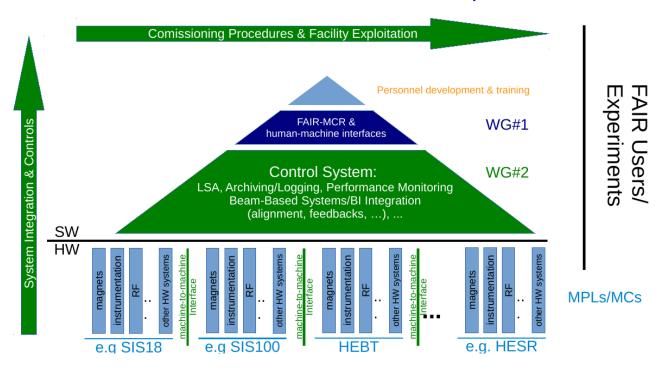
SIS18 Operation Experience & Efficiency

- possibly pessimistic/simplistic^{1,2} estimate, control room experience:
 - presently: '~ 1 shift UNILAC setup + 1 shift SIS18+TL setup' ↔ 1-2 weeks of experiments
 - potential target after 2-3 years of FAIR operation:
 - simple experiments (e.g. attached to SIS18/SIS100): 1-2 shift setup

 1-2 weeks beam-on-target
- Need to factor in efficiency evolution: early beam commissioning → reaching final beam parameter
 - short-term: ~6 month beam commissioning (day-shifts, 50%), limited parallel experiments (ie. nights & weekends)
 - medium-term: few day shifts of beam commissioning/week (~15 20%), rest beam operation
 - long-term: mainly beam operation, 1-2 days per 2-3 weeks for BC & MDs


¹possibly strong assumption that new machines can be operated with the same routine, ease and efficiency as the present GSI infrastructure, ... ² complex beam chains (e.g. HESR) with long beam setup times are typically run longer/more static than shorter (SIS18 experiments)

FAIR Parallel Operation & Efficiency Cost of Context Switches


- FAIR will be very flexible w.r.t. parallel operation scenarios.
- Caveat: unavoidable overhead costs for context switches
 - → trade-off between 'flexibility' and machine availability ('beam-on-target'):
 - I. initial setup of accelerator chain (virgin cycle):
 - initially ~1 shift/GSI machine/transfer-line involved + few months of initial commissioning of SIS100, CR, ...
 - long-term target: 1-2 shifts for SIS100, 'n' x (??) shifts for Super-FRS, CR, HESR
 - II. tuning for high-intensity operation: new territory here thus no firm estimate (yet)
 - long-term target: 1-2 shifts depending on novelty of parameters for initial setup
 - III. Revalidation/re-tuning after 'beam pattern'/'mode of operation' changes
 - long-term target: 10-20 minutes depending on
 - less critical for fast-extraction ↔ less dependence on orbit & Q/Q'
 - more critical for slow-extraction (SIS18/SIS100) & multi-turn injection (SIS18) ↔ dependence on orbit & Q/Q'
- Main strategy/recipe to optimise 'beam-on-target':
 - quasi-periodic cycle operation
 - limit major pattern changes by construction
 → beam schedule planning (tools)
 - minimise overhead of context switches:
 - optimise operation/automation

 smart tools & procedures, e.g. beam-based feedbacks, sequencer, ...
 - N.B. also liberates operators from tedious task to focus on error (pre-)diagnosis and facility optimisations
 - optimise beam planning schedule to factor-in these costs for mode of operation changes

An accelerator is more than the sum of its parts:


- FAIR Commissioning & Control Working Group
 - platform to discuss, coordinate and work-out FAIR commissioning and operation
 - open to all who can participate and contribute to this subject!
 - → feel free to register your interest

- New challenges for FAIR:
 - high-intensity operation, increased complexity, machine protection, minimising machine activation, ...
 - beam becomes more sensitive to beam parameter changes, dynamic vacuum effects & magnet hysteresis
- FAIR facility can provide a high degree of flexibility
- Main paradigm changes:
 - Need better control of hysteresis: decouple magnetic cycle from dynamic beam (extraction) request
 - Need beam intensity ramp-up concept
 - · no injection of high-intensity beam into an 'empty' machine
 - · settings need to be (re-)validated with increasing beam intensity and whenever magnetic pattern changes
 - Flexibility comes with some overhead costs → trade-off between 'flexibility' & 'beam-on-target' required
 - · new complexity: larger accelerator chain
 - caveat: mode of operation changes costs → trade-off between flexibility, machine availability, and beam-on-target
 - Need to limit of what can be setup in parallel
 - · re-tuning of machine parameter & potential cross-talk with other beams for high-intensity beams
 - · e.g. intercepting transfer-line diagnostics
- Main optimisation strategy/recipe, aim at:
 - quasi-periodic cycle operation
 - minimise major pattern changes by construction
 → beam schedule planning (tools)
 - minimise overhead costs of changing beam patterns and context switches
 - optimise operation

 smart tools & procedures, e.g. beam-based feedbacks, sequencer, ...
 - · improved planning of beam schedule

Yes ,we can!

Appendix

System Analysis & Topics to be covered

Facility & Interface Analysis

- Procedures: HWC, HWC-'Machine Check Out', BC-I, BC-II, BC-III
- Beam parameters, FAIR performance model and optimisation

Beam Instrumentation & Diagnostics – System Integration

 Intensity (DCCTs, FBCT), trajectory & orbit (BPMs), Q/Q', optics (LOCO & phase-advance), longitudinal & transverse emittance (WCM, screens, IPM, etc.), beam loss (BLMs), Δp/p, long. bunch shape, abort gap monitoring, long. Tomography, aperture model, ...

Accelerator Hardware – System Integration

 Power converter, magnets, RF, injection/extraction kicker, tune kicker/AC-dipole, beam dump, collimation/absorbers, cryogenics, vacuum, radiation monitoring, magnet model, k-modulation, ...

Control System

 Archiving, analog signal acquisition, test-beds, timing, bunch-to-bucket transfer, cyber security & role-based-access, middleware, RT & Feedbacks, daemons, semi-automated procedures, ...

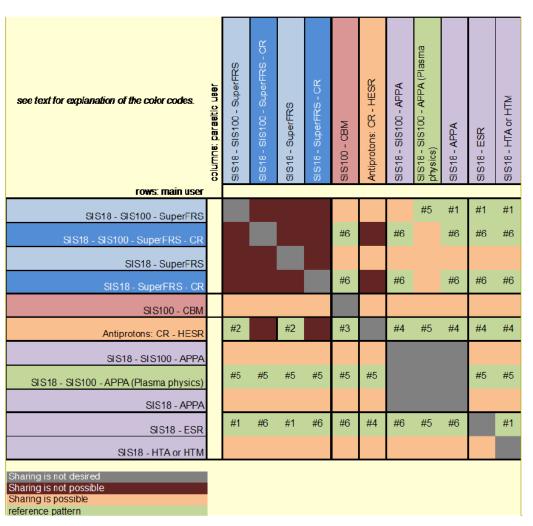
Components

Post-mortem, safe-beam settings management, machine protection

 interlocks, beam quality checks

Applications

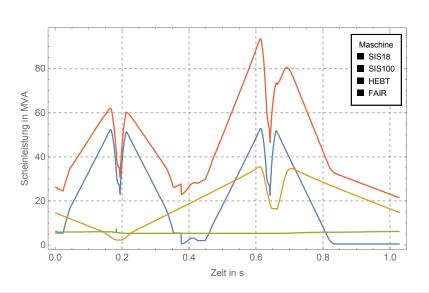
- Sequencer, GUIs, fixed-displays

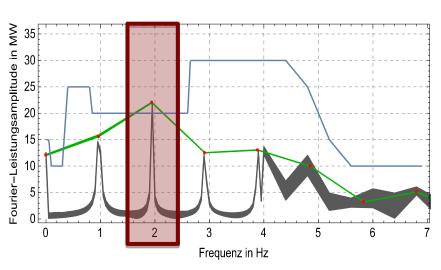


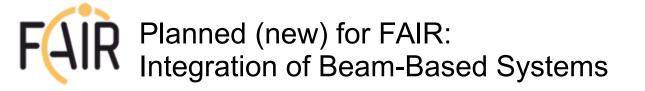
- Commissioning in Stages:
 - HWC Stage I: HWC & Machine Check-Out
 - power converter, RF, dry-runs, ...
 - HWC Stage II: test-beds and what can we check w/o beam
 - BC Stage I: rough machine checkout
 - from injection through extraction, done with "pilot"/"probe"/safe beam intensities only:
 - "easily available" ions (U28+, Ar, etc.) get particles through the chain (UNILAC → SIS18 → SIS100)
 - protons: check transition crossing/avoidance scheme, etc.
 - BC Stage II: higher intensities
 - e-cooler, space-charge effects, intensity ramp up
 - slow extraction, other machine specific features
 - Secondary particle recapture (\overline{p} & SFRS targets) into CR \rightarrow HESR
 - BC Stage III: increasing intensity/high-intensity proton operation
 - Tighten screws on interlocks, collimation and OP procedures
 - fine-tuning of working point
 - Shift to regular day-to-day operation

FAIR Parallel Operation Options

In a nutshell:


- Most parallel operation/sharing options are possible
- Some may not make sense from
 - an OP efficiency point-of-view
 - requiring too frequent source changes
 - possibly physics point-of-view
 - HW limitations, notably:
 - Super-FRS (slow rigidity changes)
 - CR (slow rigidity changes)
 - CR polarity changes (p̄ → ion operation)


P. Schütt, O. Geithner, P. Forck, "FAIR Operation Modes – Reference Modes for the Modularized Start Version (MSV)", 2015-02-13



- Most parallel operation possible within limits
- A notable (probably pathological) exception:
 - Triangle CBM (10,6 GeV)-APPA (18 Tm) Operation
 - max ramp rate hit peak and spectral power limits of available primary FAIR power distribution
- In any case one should anticipate and monitor the actual power usage and expected peak loads

... key to efficient and fast transitions between pattern and parallel operation!

Generic Priorities:

- 1. Transmission Monitoring System
- 2. Orbit Control
- 3. Trajectory Control (threading, injection/extraction)
- 4. Q/Q'(') Diagnostics & Control
- 5. RF Capture and (later) RF gymnastics
- 6. TL&Ring Optics Measurement + Control (LOCO, AC-dipole techniques etc.,)
- 7. Longitudinal Emittance Measurement
- 8. Transverse emittance measurement
- 9. Transverse and longitudinal feedbacks

Machine Specific Priorities (focus on SIS18 & SIS100)

- Multi-Turn-Injection (N.B. highly non-trivial, complex subject)
- Slow-Extraction (K.O. exciter, spill-structure, feedback, ...)
- RF Bunch Merging and Compression

Bread-and-Butter systems for OP ~ ideally for SIS18 resta

improve beam-based control of accelerator working-point

- D. Ondreka, "FAIR Machine Cycles", 6th MAC, 2011-10-11
- H. Liebermann, D. Ondreka, "SIS100 Cycles", V.2.4.1, 2014-02-26
- P. Schütt. "FAIR Accelerator Operation", 2013-09-12
- P. Schütt, O. Geithner, P. Forck, "FAIR Operation Modes Reference Modes for the Modularized Start Version (MSV)", 2015-02-13