

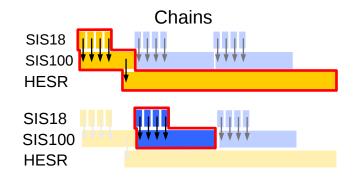
Proposal for:

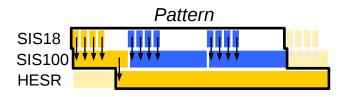
FAIR Accelerator & Beam Modes

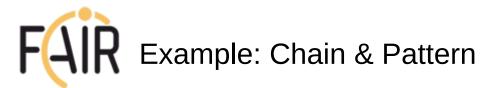
Ralph J. Steinhagen

with input from: R. Bär, J. Fitzek, L. Hechler, U. Krause, C. Omet, D. Ondreka, S. Pietri, S. Reimann, P. Schütt

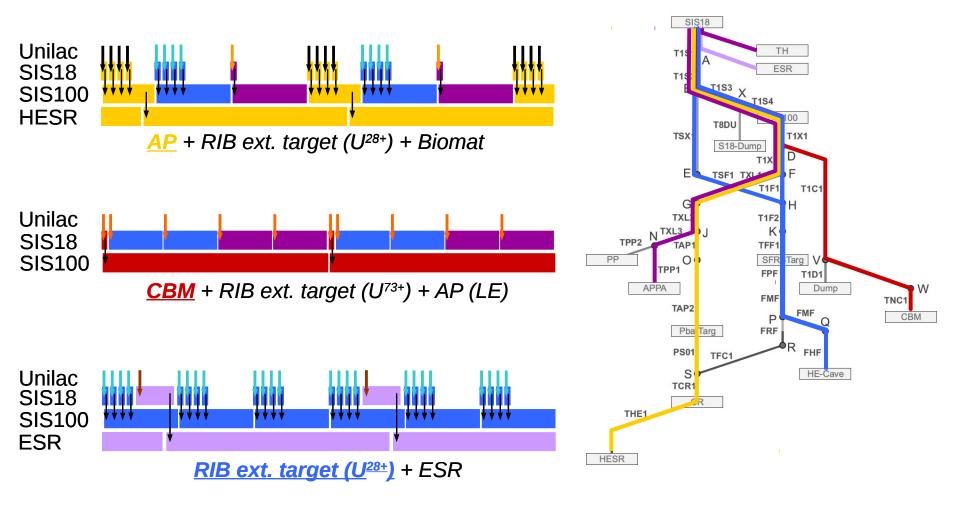
FAR Accelerator and Beam Modes




- Purpose:
 - A) Communication of intended accelerator operation to experiments, FAIR and wider community
 - what to expect and when
 - B) Conditioning of control sub-system responses
 - e.g. logging, interlocks, management of critical settings (RBAC), machine sequencer, access system, ...
- \rightarrow associated rules of what is allowed, when, where etc. some examples:
 - Limit parameter changes during data taking aka. 'Stable Beams'/'Production Runs'
 - no beam data being logged during 'shut-down' period
 - no high-intensity beam injected into an 'empty' machine
 - block certain operation during un-safe mode of operation, e.g.
 - moving in beam screens during production runs or while high-intensity beam is being extracted
 - settings change that could affect efficiency/safety of machine operation (e.g. slow-extraction)
 - uncontrolled remote tests on an operational devices during beam operation



- Beam-Production-Chain:
 - organisational structure to manage parallel operation and beam transfer through FAIR accelerator facility
 - defines sequence and parameters of beam line from the ion-source up to an experimental cave (e.g. APPA, CBM, SuperFRS, ...)
 - definition of target beam parameters (set values): isotope, energy, charge, peak intensity, slow/fast extraction, ...
- Beam Pattern:
 - grouping of beam production-chains that are executed periodically
 - can be changed of pattern within few minutes (target, requires automation for beam-based retuning)



Periodic beam patterns, dominated by one *main* experiment:

courtesy D. Ondreka

Mode:

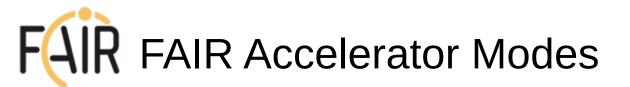
- deliberate user-driven state used to precondition the control system behaviour and responses independent of the actual accelerator or beam state → 'reference' or 'desired target' of operation (long-term)
 - formal agreement between accelerator operations and experimental users w.r.t. what to expect
- Tracked by operator (initially) and semi-automated sequencer to follow normal operational sequence
 - Example 1: 'Shut-Down' \rightarrow 'Cool-Down' \rightarrow 'Machine Check-Out'
 - Example 2: ... \rightarrow 'no beam' \rightarrow 'pilot beam' \rightarrow 'intensity ramp-up' \rightarrow 'adjust' \rightarrow 'stable beams/production for physics' \rightarrow ...
 - need to limit number of mutually exclusive and concise modes ↔ overhead of settings generation and their checks
- no real-time requirements

Actual State:

- measured current state of the accelerator/beam (short-term)
 - perviates accelerator & beam mode definition & equally used as a ad-hoc/post condition
 - Examples: Beam-Presence-Flag (BPF), Setup-Beam-Flag (SBF), Injection & Extraction Permit (MP interlock states)
- real-time requirements
- Examples:
 - 'No Beam' beam mode declares intend (as an agreement) that there will be no beam in the machine
 - 'Beam Presence Flag' is measured actual state whether there is (/was) beam in the machine or not
 - N.B. obviously a 'NO BEAM' beam mode & 'BPF=true' should lead to an interlock
- Shouldn't mix 'modes' with 'actual states' to prevent circular dependencies, priority/causality inversions

• Main modes:

1)Accelerator (Machine) Modes


- covering rule sets outside of beam operation
- defined per accelerator/transfer-line segment

2)Beam Modes

- covering rule sets during beam operation
- defined per accelerator/transfer-line segment <u>and</u> beamproduction-chain

3)'is operational' mode (boolean flag)

- defines whether device/machine control is handled by OP from MCR (formalised handover from development/'machine check-out' to OP)
- e.g. non-MCR access to 'operational device ' is locked down as soon as e.g. 'MACHINE-CHECKOUT' mode is reached (↔ access via RBAC still possible)

Follows annual life-cycle of accelerator facility

- Operation without Beam:
 - SHUTDOWN
 - · could imply possibility of open/controlled access or no powering
 - COOLDOWN (SIS100, SFRS)
 - typ. 2-3 weeks, limited/no access
 - need to distinguish between a 'warm' and cold' shutdown?
 - BAKE-OUT (SIS18, HEBT, ...) similar to cool-down
 - WARM-UP (SIS100, SFRS)
 - RECOVERY (SIS100, SFRS)
 - after quench, partial vacuum loss, typ. few hours day
 - · includes e.g. periodic magnet CYCLING to stabilise hysteresis
 - MACHINE-CHECKOUT
 - · operations tests without beam in view of beam operation
 - (e.g. power converter calibration, magnet patrol, etc.)
 - · done once after a long shutdown, typ. few weeks before beam operation
 - ACCESS (during beam operation periods)
 - controlled access for specific tasks only (signature by MCs & OP)
- Operation with Beam:
 - BEAM SETUP or MACHINE SETUP
 - focus on initial/re-commissioning, machine setup after long shut-down + OP training
 - PHYSICS
 - MACHINE DEVELOPMENT
 - focus on accelerator/beam physics aspects
- MACHINE TEST (during beam operation periods)
 - controls, RF, new front-end, ... tests w/o beam + OP training
 - Ad-hoc during beam operation but not 'Physics' nor 'MD'

describe main aim of machine operation +

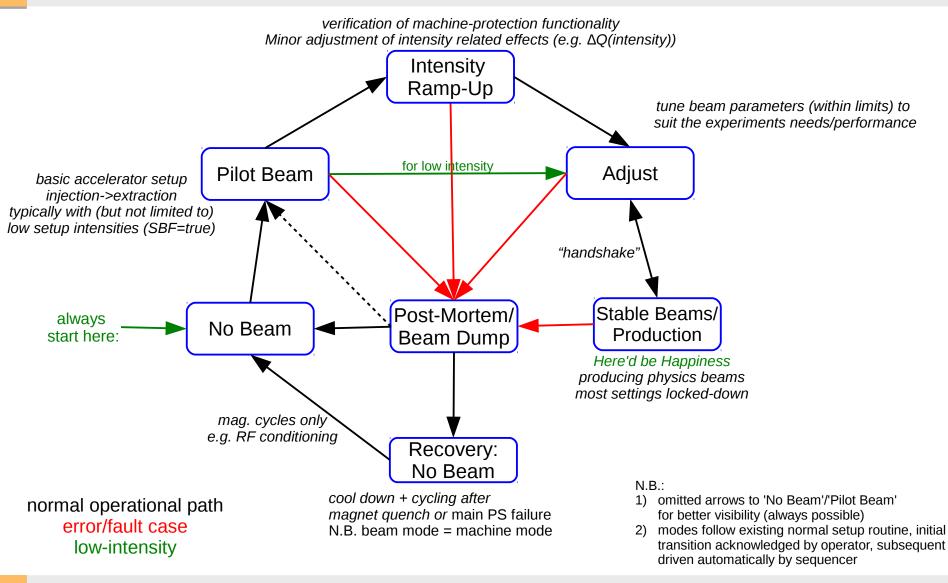
info & Accounting type modes

operation without beam (part of shut-down coordination)

FAR Example: GSI Beam Schedule aka. "Strahlzeitplan"



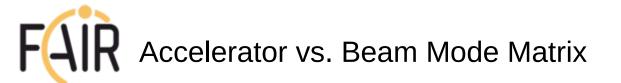
Planung Strahlzeit- und Shutdownperioden 2012 (Stand 17.10.2012, W. Bayer)


Januar 2012	Februar 2012	März 2012	April 2012	Schulferien					
Mo Di Mi Do Fr Sa So	Mo Di Mi Do Fr Sa So	Mo Di Mi Do Fr Sa So	Mo Di Mi Do Fr Sa So	Denumerien					
	1 2 3 4 5 5	1 2 3 4 9	1 13	21.12.2012 - 08.01.2012 Weihnachten					
2 3 4 5 6 7 8 1	6 7 8 9 10 11 12 6	5 6 7 8 9 10 11 10	2 3 4 5 6 7 8 14	02.04.2012 - 15.04.2012 Ostern					
9 10 11 12 13 14 15 2	13 14 15 16 17 18 19 7	12 13 14 15 16 17 18 11	<i>9</i> 10 11 12 13 14 15 15	02.07.2012 - 12.08.2012 Sommer					
16 17 18 19 20 21 22 3	20 21 22 23 24 25 26 8	19 20 21 22 23 24 25 12	16 17 18 19 20 21 22 16	15.10.2012 - 28.10.2012 Herbst					
23 24 25 26 27 28 29 4	27 28 29 9	26 27 28 29 30 31 13	23 24 25 26 27 28 29 17	24.12.2012 - 13.01.2013 Weihnachten					
30 31 5			30 18						
Mai 2012	Juni 2012	Juli 2012	August 2012	Feiertage					
Mo Di Mi Do Fr Sa So	Mo Di Mi Do Fr Sa So	Mo Di Mi Do Fr Sa So	Mo Di Mi Do Fr Sa So	1 oror tage					
1 2 3 4 5 6 18	1 2 3 22	1 26	1 2 3 4 5 31	06.04.2012 - 09.04.2012 Ostern					
7 8 9 10 11 12 13 19	4 5 6 7 8 9 10 23	2 3 4 5 6 7 8 27	6 7 8 9 10 11 12 32	01.05.2012 1.Mai					
14 15 16 17 18 19 20 20	11 12 13 14 15 16 17 24	9 10 11 12 13 14 15 28	13 14 15 16 17 18 19 33	17.05.2012 Himmelfahrt					
21 22 23 24 25 26 27 21	18 19 20 21 22 23 24 25	16 17 18 19 20 21 22 2 9	20 21 22 23 24 25 26 34	27.05.2012 - 28.05.2012 Pfingsten					
28 29 30 31 22	25 26 27 28 29 30 26	23 24 25 26 27 28 29 30	27 28 29 30 31 35	07.06.2012 Fronleichnam					
				3.10.2012 Tag der d. Einheit					
	Acceler	ator Modes are	e not new!						
September2012already practise in normal operationLegendMo Di Mi Do Fr Sa So \rightarrow plan to make CS also aware of themLegend									
	→ allov	vs to define rules, sta	atistics,	Shutdown					
3 4 5 6 7 8 9 36	8 9 10 11 12 13 14 41	5 0 / 8 9 10 11 45	3 4 5 6 / 8 9 49	Inbetriebnahme					
10 11 12 13 14 15 16 37	15 16 17 18 19 20 21 42	12 13 14 15 16 17 18 46	10 11 12 13 14 15 16 50	Strahlzeit					
17 18 19 20 21 22 23 38	22 23 24 25 26 27 28 43	19 20 21 22 23 24 25 47	17 18 19 20 21 22 23 51	nur UNILAC-Betrieb					
24 25 26 27 28 29 30 39	29 30 31 44	26 27 28 29 30 48	24 25 26 27 28 29 30 52	B-Experimente					
			31 1	unter Therapiebedingung					
*2125.11. B-Experimente SIS © vrwschaa/08-1									

GS Helmholtzzentrum für Schwerionenforschung GmbH

Ralph J. Steinhagen, r.steinhagen@gsi.de, 2015-06-17

GS Helmholtzzentrum für Schwerionenforschung GmbH


FAIR Beam Modes

- Follows life-cycle of beam setup and production also not new, de-facto how
 - NO BEAM
 - prevent/stop beam being injected by design (↔ mode)
 - PILOT BEAM alternate: Beam Setup?
 - Establishing main machine parameters: injection steering, RF capture, ramp, orbit, Q/Q', optics checks, extraction
 - typically done with low setup-intensities
 - INTENSITY RAMP-UP should we differentiate stages? e.g.: INT. RAMP-UP #1, INT. RAMP-UP #2, ... ?
 - beam parameter tuning and checks related to increasing intensities (e.g. slow extraction, space-charge, etc.)
 - check of interlocks & machine protection functionalities (limited user group only ↔ special RBAC role for e.g. interlock settings)
 - ADJUST
 - · Perform actions/change minor beam parameters ("minor" needs to be defined)
 - tune beam parameters (within limits) to suit the experiments needs/performance
 - STABLE BEAMS alternate: PRODUCTION (for physics)
 - · main intend is to deliver stable beam to experiments
 - tbd: very limited machine tuning
 - BEAM-DUMP or POST-MORTEM
 - response to quench, MP action, or other action that needs to be analysed before one can continue with normal operation
 - RECOVERY
 - · recovering from severe post-mortem, essentially includes 'CYCLING'
- For storage rings (essentially only ESR & HESR)
 - Do we need INJECTION/ACCUMULATION & RAMP modes?

Beam Modes are not new! already practise in normal operation → plan to make CS also aware of them → allows to define rules, statistics, ...

11

		Accelerator Mode									
						Beam Operation					
		Shut-down	Cool-down	Warm-Up	Recovery	Machine-Checkout	Access	Machine Test	Beam Setup	Physics	Machine Development
Beam Mode	No Beam	х	х	х	х	х	х	х	х	х	х
	Pilot Beam								x	х	x
	Intensity Ramp-Up								x	х	x
	Adjust								x	x	x
	Stable Beams									х	
	Post-Mortem								x	x	x
	Recovery								x	х	х

N.B. defined per accelerator/transfer line segment

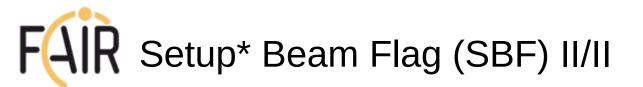
N.B. defined per accelerator/transfer line segment & beam production chain

concatenation of <accelerator mode>:<beam mode> e.g. 'Shut-down:No Beam', 'Physics:Pilot Beam'

GS Helmholtzzentrum für Schwerionenforschung GmbH

Ralph J. Steinhagen, r.steinhagen@gsi.de, 2015-06-17

FAR Beam (Past) Presence Flag (BPF)



- indicates that cycle/settings have been validated with Pilot- or Physics-Beam in the <u>recent past</u>*
 - main usage: prevent high-intensity injections into an 'empty' machine with new untested magnetic settings or modified machine conditions
 - defined per accelerator or transfer-line segment (where necessary)
 - flag being set if settings are basically OK (excluding high-intensity effects) w.r.t. basic accelerator function. Example:
 - 1. empty machine \rightarrow beam mode set to 'PILOT BEAM'
 - 2. check/tune: injection, RF capture, orbit, tune, chromaticity, ramping, extraction, transmission, ...
 - 3. Compare results with targets (either by design or from Archiving System)
 - 4. if result is with predefined limits \rightarrow 'BPF:=true' + time stamp
 - initial check done by operator, subsequent updates by sequencer
 - 5. sequencer: repeat steps 2-4 in parallel and update time stamp when applicable
 - To be discussed/defined:
 - when are 'settings' are the 'same', 'marginally' and 'sufficiently' different to force stepping back to 'pilot beams' ↔ affects: settings check, tolerance bands & MCS
 - · Proposal to automatically expire when 'Accelerator Mode' changed
 - e.g. Physics Access Physics
 - when to 'expire' the BPF: after a few minutes, hours, days, weeks?
 - N.B. *'recent past' \leftrightarrow slightly different definition compared to LHC

- Indicates beam used to setup beam production chain (typically low-intensity)
 - Interlocks targeted for high-intensity operation may impact setup and availability with low-intensities.
 - defined per accelerator or transfer-line segment (where necessary)
 - SBF provides flexibility of masking interlocks during setup periods
 - Flag derived automatically by beam current transformers (simple threshold)
 - 'SBF=TRUE': less critical interlocks can be masked
 - \rightarrow improves availability
 - 'SBF=FALSE': masked interlocks are automatically un-masked
 - → limits risk of forgotten but for high-intensities critical masked interlocks
 - Examples:
 - temporary transmission of 20% OK during setup but shouldn't keep this disabled once moving to high-intensity operation with same beam type
 - Beam screens, wire-grids create extraction/injection interlock when inserted to protect themselves. Interlock can be however be masked if the 'SBF==true' + additional beam mode requirements: e.g. not in 'STABLE BEAMS' or 'INTENSITY RAMP-UP', etc.

- *N.B. why 'Setup' and not 'Safe': SBF formerly also coined as 'safe beam flag', but 'setup' preferred to 'safe' since
 - 1. some of the setup operations need to be done with un-safe beam intensities,
 - 2. there is no unconditional 'safe intensity' for some very sensitive devices (e.g. SIS100 e.-s. septa, Si tracker)
 - 3. Old/known concept: should stick to common terminology already established in other facilities (CERN)
 - Examples:
 - e.g. setup of slow extraction (different emittances due to 'emittance ↔ intensity' correlation, etc.)
 - · e.g. setup of BLM thresholds with nominal beam intensities
- SBF-maskable interlock candidates: mostly more complex & BI-derived interlocks:
 - beam transmission & beam loss monitoring (↔ beam availability during beam setup)
 - · beam screens & multi-wire grids (protect when necessary)
 - orbit during injection, ramp & extraction (↔ uncertain reliability)
 - · long-term: longitudinal (easier) & transverse emittance
- To be discussed:
 - BPF & SBF transmission via timing system alongside accelerator & beam mode information
 - no BCT information \rightarrow 'SBF:=FALSE'
 - if $(t_{\text{now}}-t_{\text{BPF}}) > \Delta t_{\text{thresh.}}' \rightarrow \text{BPF}:=\text{FALSE'}$
 - Integration of SIS18/SIS100 current transformer, threshold definition, time-scales, reliability
 - Simple threshold, evaluated 100 (10?) ms before SIS18/SIS100 extraction; no information → 'SBF:=FALSE'

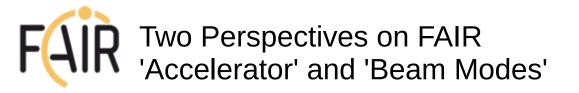
- Injection/Extraction Permit
 - SIS100 equipped with fast-abort-system that de-facto defines this
 - need similar structure also for SIS18, Super-FRS, HEBT, ... to suppress extraction/injection of unsafe high intensity beam
 - e.g. when beam screens are inserted in transferline

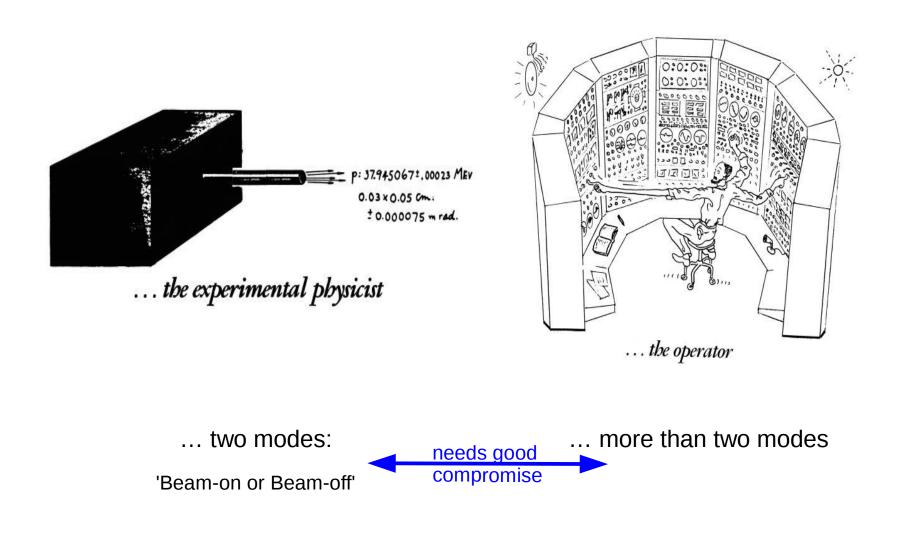
- Accelerator & Beam Modes:
 - 'modes' are deliberate user-driven states declaring the intended operation/sequences
 - · Communication of intended accelerator operation to experiments, FAIR and wider community
 - Conditioning of control sub-system responses
 - Proposed modes:
 - Accelerator Modes (11): SHUTDOWN, COOLDOWN, WARM-UP, RECOVERY, MACHINE-CHECKOUT, ACCESS, MACHINE TEST, Operation with Beam (info): BEAM SETUP, PHYSICS & MACHINE DEVELOPMENT
 - covering rule sets outside of beam operation, defined per accelerator/transfer-line segment
 - Beam Modes (7): NO-BEAM → PILOT BEAM → INTENSITY RAMP-UP → ADJUST → STABLE BEAMS + POST-MORTEM & RECOVER

- covering rule sets during beam operation, defined per accelerator/transfer-line segment and beam-production-chain

- 'Actual States' measure current states
 - Beam-Presence-Flag, Setup-Beam-Flag, Injection/Extraction Permit
 - N.B. should refer to 'setup beam' rather than 'safe beam'
- Next steps:
 - re-Iterate concept through FAIR Commissioning & Control WG (FC²WG)
 - Prepare and circulate dedicated specification via EDMS as reference document (target: Q3-2015)
 - N.B. present information spread out/included into documents with other larger/different focus

FAR Historic Cross-References


- P. Schütt, "Betrieb der GSI/FAIR Beschleunigeranlagen", V 7.0, EMDS, #1057366, 2010-10-15 (dated/incomplete)
 - link: https://edms.cern.ch/file/1057366/1/Betriebskonzept-V7.pdf
- J.Fitzek et al., "Detailed Specification of the FAIR Accelerator Control System Component 'User Applications'", F-DS-C-04e, V3.0, 2012-08-16
 - link: https://edms.cern.ch/file/1176028/1/F-DS-C-04e_User-Applications-v3.0.pdf
- R. Alemany, M. Lamont, S. Page: "LHC Modes", LHC-OP-ES-0005 rev 1.0, EDMS, #865811
 - link: https://edms.cern.ch/file/865811/1.1/LHC-OP-ES-0005-10-10.pdf
 - update: https://edms.cern.ch/file/1070479/1.6/LHC-OP-ES-0022-V1_6.docx



Appendix

GS Helmholtzzentrum für Schwerionenforschung GmbH Ralph J. Steinhagen, r.steinhagen@gsi.de, 2015-06-17

- Mode changes need to be logged and used as meta-data for archiving & system machine performance analysis, e.g.
 - Accelerator performance: intensity/particles-on-target during 'Stable Beams'
 - Accelerator availability: how was allocated beam time spread across 'Beam Setup', 'Intensity Ramp-Up', 'Adjust' & 'Stable Beams' for given experiment
 - establishes reference for future, identifies bottlenecks/inefficiencies to be targeted
 - Beam parameter stability during 'Stable Beams' (e.g. orbit, Q/Q', transmission)
- Accelerator modes are independent for every machine/transfer line segment
 - Respect modes in accelerator chain
 - e.g. cannot have down-stream machine in 'production beams' while up-stream machine is e.g. in 'ACCESS', 'PILOT BEAMS', etc.
- Beam modes are different for beam production chains
 - e.g. SIS100 could be in 'PRODUCTION' for U²⁸⁺ but in 'SETUP' for Au⁷⁹⁺
 - Need to check for accelerator modes that are global (e.g. access, recover, cool-down