

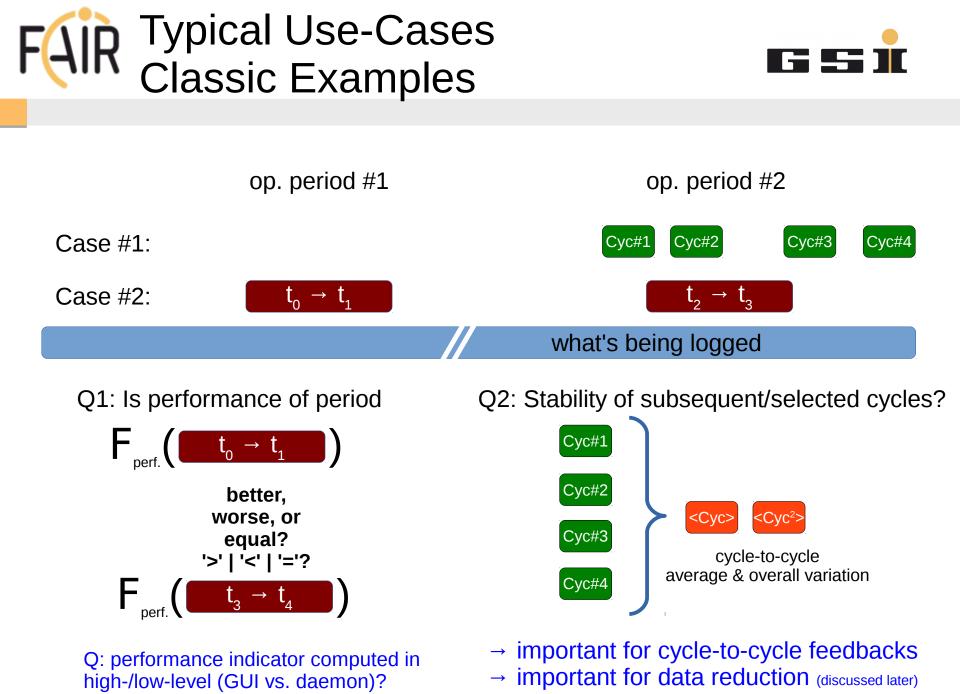
Proposal for:

Archiving & Post-Mortem for FAIR – First Iteration –

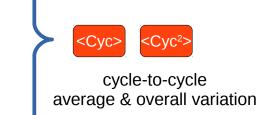
Ralph J. Steinhagen

with input from: R. Bär, J. Fitzek, T. Hoffmann, S. Jülicher, D. Ondreka, S. Reimann, A. Reiter

Archiving


Post-Mortem

FAR Aims of Archiving & Post-Mortem

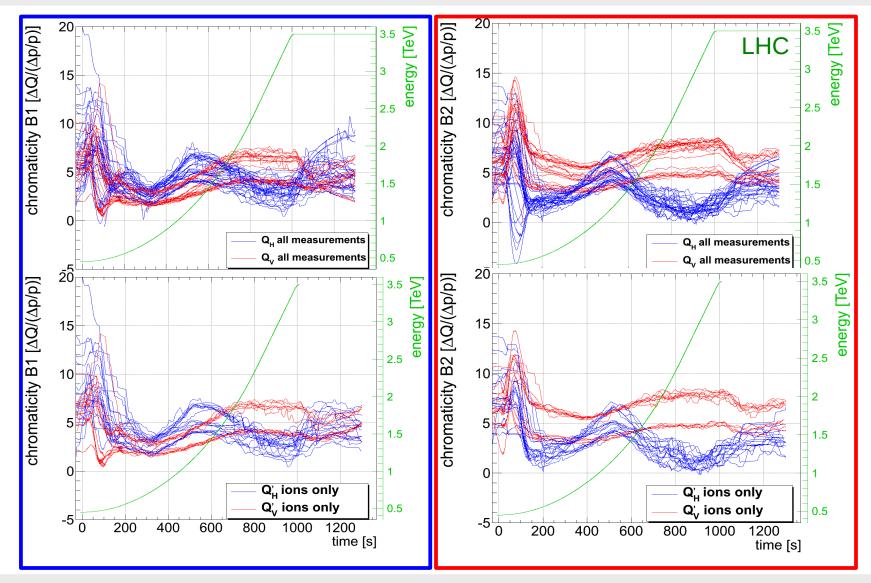

- Collect and store pertinent accelerator data centrally to permit analysis of the accelerator performance and its proper function
- Terminology distinguish
 - 'Data Archiving' continuous ("slow") data acquisition (aka. 'Logging')
 - periodic, reduced-frequency data (lower bandwidth)
 - purpose: reconstruct machine/beam condition for later refined re-analysis and/or correlation with other experiments
 - example: intensity, emittance, orbit, Q/Q', PC currents, ...
 - 'Post-Mortem' transient data recording
 - asynchronous, high-frequency data (high bandwidth)
 - Purpose: reveal cause of emergency beam abort / possible equipment damage & validate correct functioning of protection systems
 - example: QPS, PC currents, turn-by-turn BI data after quench

GS Helmholtzzentrum für Schwerionenforschung GmbH

FAIR Typical Use-Cases Cycle-to-Cycle Feedback I/II

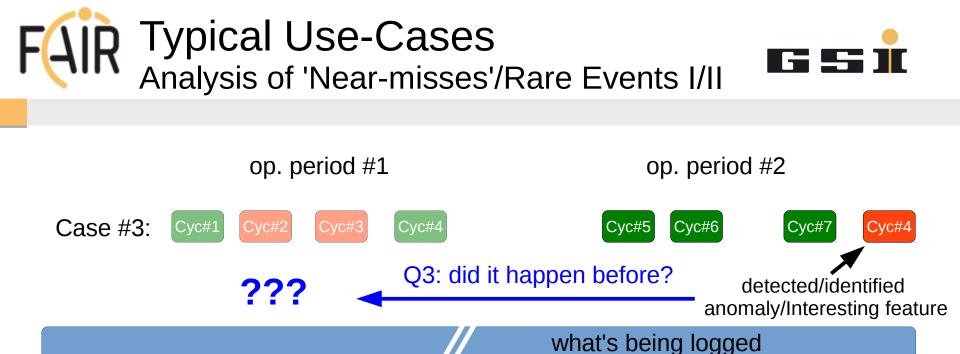
- Cycle-to-cycle feedback/ optimisations via archiving system?
 - A priori very similar to use-case discussed before, but with additional more sophisticated cycle selection:
 - Intensity/transmission range
 - correlation with emittances
 - More detailed/complex beam measurement cuts (de-select BPMs, etc.)
 - Initial prototyping: GUI-level implementation
 - Long-term: background daemon process


Cyc#1

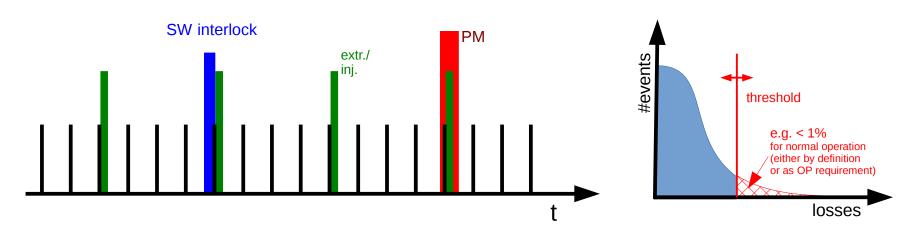

Cyc#2

Cyc#3

Cyc#4



GS Helmholtzzentrum für Schwerionenforschung GmbH Ralph J. Steinhagen, r.steinhagen@gsi.de, 2015-06-03


GST

- Permits a <u>quantitative</u> analysis on events which may trigger mitigations or improvements based on the frequency of the individual events, e.g.
 - analysis of near-misses not caught by PM/MP.
 - Comparison with earlier performances & availabilities:
 - "Have we been able to do it better in the past?"
 - "What are the main systems/parameters impacting availability?"

R Typical Use-Cases Analysis of 'Near-misses'/Rare Events II/II Studying of such cases helps improving operation by minimising these events and/or ٠ proposing new counter measures intercepting these at an earlier (/safer) stage

- Some examples:
 - Poor control of orbit/emittances (e.g. slow drifts over few cycles) \rightarrow increasing losses in ring/transfer lines \rightarrow eventual guench
 - $\dots \rightarrow$ cryo temperature increase \rightarrow reduced temperature margin \rightarrow guench
 - PM occurring & masked SW interlock
 - but also: establishing reliable reference and tolerance thresholds ↔ optimising machine availability
 - e.g. beam-loss (/transmission) thresholds driven by past "good" cycles ↔ reject acceptable tail of cycle-tocycle distribution

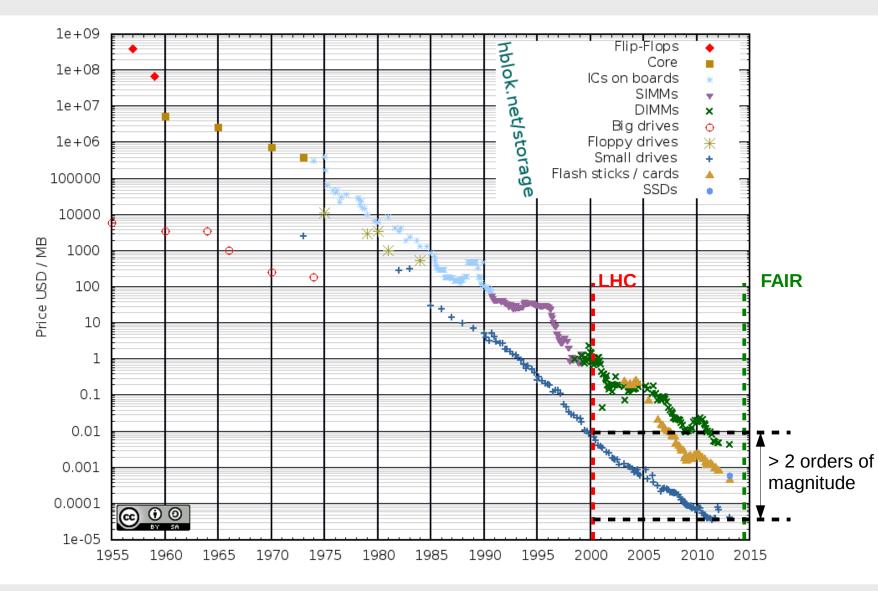
FAR Hierarchy & Coverage Preparing for the Unknown

"Reports that say that something hasn't happened are always interesting [..], because as we know, there are known knowns; there are things we know we know. We also know there are known unknowns; [..] But there are also unknown unknowns – the ones we don't know we don't know. [..] the latter category that tend to be the difficult ones. The absence of evidence is not evidence of absence, or vice versa.", Donald Rumsfeld in 2002

- We do not know in advance which data might be interesting/useful later
 - 'Somebody's noise is somebody else's signal'
- MD studies often reveal unexpected effects (that's why we do them)
 - relevant data might not have been recorded
- Analysis of rare events
 - typically not easily reproducible
 - might have a history of 'near misses'
 - might not be detectable by post-mortem
- Repetition of study would waste beam time and create unnecessary costs

 \rightarrow Should aim at a broad coverage of accelerator monitoring to open the chance of providing evidence for identifying difficult operational or machine protection scenarios.

FAR Hierarchy & Coverage Archiving and Post-Mortem



- Conceptually both fulfil a similar (/the same?) purpose: improve operation and verify proper function of protection systems.
 - Most systems providing PM need to provide also measurement data*
- Historic view: 'Post-Mortem' was introduced for LHC because granularity of logging (archiving) was not adapted for fast transients & vastly different time scales between regular operation and failures*
 - LHC: six orders of magnitudes:
 - normal operation: seconds to minutes (N.B. sc. magnets)
 - failure modes: ms (slow magnet failures) $\rightarrow \mu s$ (fast kicker failures, beam instabilities, ...)
 - SIS18/100: normal operation: ~ ms (e.g. ramp ~ 200 ms) vs. failure: ~ 1 ms (1000 turns)
- Historically: large & costly gap between "slow" logging and PM
 - constraints have substantially changed for FAIR

*N.B. Aviation industry slowly moves away from transient recorders and to an online streaming approach for redundancy and reliability reasons (lack of data coverage, to-short data coverage time scales, difficulties of recovering recorder, etc.)

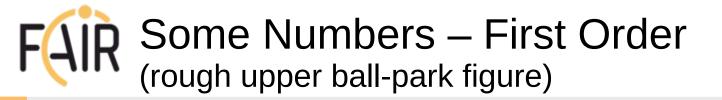
FAR Hierarchy & Coverage Cost of Memory and Storage

GS Helmholtzzentrum für Schwerionenforschung GmbH

FAR Hierarchy & Coverage Example: by machine (complementary: by system group)

Root:

- CR
- ESR
- FRS
- HESR
- p-Linac
- SIS18
- SIS100
- SFRS
- ..
- UNILAC
- + Transfer-Lines (implies synoptic overview to find the one of interest!)


- Beam Instrumentation
 - Beam Intensity
 - Beam Losses
 - Beam Position: Orbit & Trajectory (first/last turn, ...)
 - Beam Profile: Ionisation Profile Monitors (IPMs), Screens, Wallcurrent-monitor, wide-band current transformer
 - Tune, Chromaticity & Optics
- Beam Feedbacks
- Beam Absorbers & Collimators
- Cryogenics
- Kickers
 - Exciters (AC-dipole, aperture kicker, tune kicker, KO exciter)
 - Injection, extraction & emergency beam dump kicker
- Power Converters & Quench-Protection
 - Corrector magnets
 - Lattice sextupoles
 - Main dipole, main quadrupole
 - Septa magnets
- Radio-Frequency Cavities
 - Main cavities, bunch merging, bunch splitting
- Radiation Monitors (N.B. personnel safety, not BLMs)
- Timing & (HW/SW) Interlocks
- Vacuum
- Access System, general infrastructure (power, ethernet, ...)

FAR Hierarchy & Coverage More specific Example

- Beam Current Transformer (DCCT, FCT)
 - Avg. Intensity, Status (bit-mask),
 - average losses: e.g. SIS18@1kHz , SIS100@100Hz , CR@10Hz?
 - instantaneous losses:
 - normal: first 1000 turns (injection losses), before/after start ramp (capture losses), extraction
 - Post-mortem: e.g. last 10000 turns
- Beam Position Monitors
 - Position, StDev, Sum-Signal, Status (bit-mask), Mask (enabled/disabled)
 - Orbit rate: e.g. SIS18@1kHz , SIS100@100Hz , CR@10Hz?
 - Trajectory rate:
 - normal: first 1000 turns (injection steering), transition crossing, last 10 turns (extraction steering)
 - Post-mortem: e.g. last 10000 turns
- Beam Loss Monitors (ionisation chambers, cryo-collimators, etc.) ↔ probably similar to BPMs
- All power converter
 - Current, RefCurrent, Voltage, RefVoltage, Status, PCTemperature, CableTemperature
 - Average rate: e.g. SIS18@1kHz , SIS100@100Hz , CR@10Hz?
- Kicker: injection/extraction kicker waveforms ↔ probably similar also long. diagnostics (FCTs)
 - Average rate: typically 2 x 1 turn, e.g. nanosecond resolution \leftrightarrow 2 x 4000 data points

Need to establish list to realistically assess coverage and implication on data rates/volumes! \rightarrow Excel-Sheet

• Total number of devices:

Rough #device estimates:	Total	SIS18	SIS100	CR	HESR	HEBT	Super- FRS
Total	2032	166	436	129	129	912	260
Power Converter	1317	100	300	70	70	600	177
Beam Instrumentation	435	30	100	23	23	200	59
Vacuum	220	24	24	24	24	100	24
RF	60	12	12	12	12	12	0

- Very rough estimate of number of variables: ~ 50k (factor 2 margin)
 - N.B. power converter or BPMs: typ. 10 variables per device (including time stamp)
 - N.B. does not include profiles measurements (large volume, low rate)
 - → Bandwidth: ~ 0.2 MB/s @ 1 Hz (slow) or 20 MB/s @ 100 Hz (fast)
 - N.B. single hard drive: $\sim 50 120$ MB/s
 - \rightarrow Volume: ~ 6 TB/year (slow) or 11 TB/week (fast)
- For comparison: LHC 10⁵...10⁶ variables @ 0.1-1 Hz (< 8 MB/s, 2004)

• Sampling 'Rule-of-thumb' (control theory)

$$f_{s} > 20 \ ... \ 40 \cdot f_{bw}$$

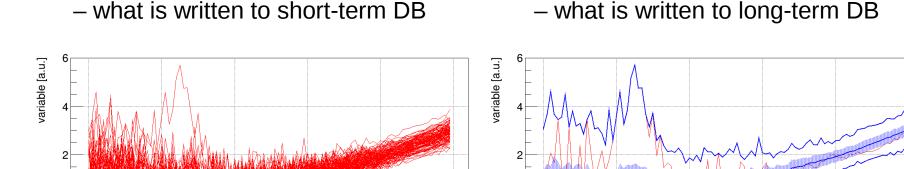
- N.B. min. of phase est. errors, $f_{\scriptscriptstyle bw}$ ~ 1 / 'time constant' τ of the physics process
- Applies for basically all feedback loops
- For comparison:
 - SIS18: → $f_s \ge 257$ Hz e.g. 1 kHz
 - 10 T/s, 1.73 T $|_{max} \rightarrow \tau_{(10-100\%)} \approx 0.16 \text{ s}$
 - SIS100: → $f_s \ge 94$ Hz e.g. 100 Hz
 - 4 T/s, 1.9 T $|_{max} \rightarrow \tau_{(10-100\%)} \approx 0.4 \text{ s}$
 - CR: $\rightarrow f_s \ge 1.5 \text{ Hz}$ e.g. 10 Hz
 - 0.054 T/s, 1.6 T $|_{max} \rightarrow \tau_{(10-100\%)} \approx 27 \ s$
 - HEBT & Super-FRS:
 - single shot/slow extraction \rightarrow $f_{\rm s}$ \approx 0.1 or 1 Hz OK? 10/100/1k Hz for slow-extraction?

• Fold in more realistic rates per machine:

		SIS18	SIS100	CR	HESR	HEBT	Super- FRS	Total
Total variables:		166	436	129	129	912	260	
proposed sampling	[Hz]	1000	100	10	10	1	1	
Data rate	[MB/s]	6.33	1.66	0.05	0.05	0.03	0.01	
Data amount (weekly)	[TB/week]	3.65	0.96	0.03	0.03	0.02	0.01	4.69
Data amount (year)	[TB/year]	190.45	50.02	1.48	1.48	1.05	0.30	244.77

- Instantaneous load appears to be less of an issue
 - Total bandwidth: < 10 MB/s (N.B. DVD: 1-2 MB/s, Blu-ray: 5-6 MB/s)
 - Required buffer: ~ 5 TB/week
- Should aim at a total storage amount of less than 5-10 TB/year \rightarrow 25-50 x data reduction needed

Global/Machine-State dependent Options


- Only short-term data storage
 - Some variables loose importance after a few weeks
 - 'expert-only' variables
 - · could change to long-term storage if deemed necessary
- Drop BI data for periods w/o beam
 - maybe trivial but worthwhile mentioning
 - relies on reliable beam current information
- 'Machine-Mode' dependent data rates
 - Shut-down, access, 'machine check-out', beam operation
- 'Beam mode' dependent data rates
 - No-beam/prepare, pilot beam (setup with safe intensities), intensity ramp-up (setup with unsafe beam), production operation
- Beam-process dependent data rates:
 - no-beam, Injection, ramp, flat-top/(fast) extraction, slow-extraction, coasting, ramp-down

proposal for next FC²WG meeting

FAR Data Reduction Possibilities II/III Short-Term vs. Long-Term storage

- 1 kHz for few weeks \rightarrow 1 Hz
 - Option: keeping high-frequency data on request for MD purposes
 - Option: beam mode dependence: 'high' (1 kHz) during setup/intensity ramp up, 'low' (10/100 Hz) during production runs?
- On-change data reduction
 - Easy for boolean/integer values (e.g. 'on','off', statuses etc.), non-trivial for floating point values ('*somebody*'s *noise is somebody*'s *signal*')
 - Possible compromise is this acceptable for most systems:
 - a) Store <min/mean/stdev/median/max> of cycles for given periods (with or w/o beam), keep full snap-shot every e.g. 1 hour
 - b) Store transients if e.g. <actual value> outside 'n <stdev> band' for given cycle
- Exception:
 - Full beam profiles at injection & extraction
 - PM data causing beam-abort or quench \rightarrow keep last minute before PM

1000

~ factor 30 data reduction

time [ms]

Raw Data Rate:

200

400

600

-6

0

Reduced Data:

information retained:

400

200

parameter trends (mean) parameter stability (stdev) worst-case envelope (min/max)

"random" single-event

800

600

800

19

1000

time [ms]

FAR Data Storage Paradigm & Required Read-Bandwidth

- Required 'write' bandwidth probably < 10 MB/s
- May need much more read-bandwidth:
 - Typical use-case is a 'b-tree' type search:
 - 1) Find given cycle/events within a large time span
 - 2) read sequentially detailed/full data before/after the event
 - 3) Compare data sets across large time scale (e.g. long-term temperature drifts, linear time-scale)
 - 4) Compare cycle-to-cycle evolution (pseudo linear-timescale with large gaps)
 - multiple user and random access (different datasets/interest)
 - Number of parallel user: 10, 20, ... ,100?
 - Can expect 100 MB/s from typical HDD!?!
 - option: reduce supported bandwidth/redundancy gradually over past years (↔ users will less likely access older datasets)
- Required CPU performance:
 - Local vs. distributed data analysis?

FAR Data Extraction I/II Selection Criteria

- Time selection keep selection of multiple windows/intervals/cycles and collate
 - Time window: $t_{start} \rightarrow t_{stop}$
 - sub-selection: last day, last week (with operational relevant end day/periods definition → for statistics)
 - Time interval: $t_{reference}$ - $\Delta t \rightarrow t_{reference}$ + Δt
 - Cycle range: t_1 (serial id #1) $\rightarrow t_2$ (serial id #2)
- Sub option:
 - Only select cycles/beam processes with beam
 - ie. ignore beam-out, ramp-down, cycles with missing linac injections
 - Only retrieve data between two events
 - e.g. injection \rightarrow extraction, start-ramp \rightarrow end ramp
 - Only select cycles for a given beam type
 - U_{28+} -only, U_{92+} -for-CBM, 'protons for p-production' \rightarrow rationalisation needed to minimise the number of options at hand \rightarrow summarise in meta-information
- Meta-Information (filter conditions)
 - Beam parameter
 - Ion-species, beam target (experiment), actual intensity, actual beam transmission, targeted intensity range, ...
 - Machine parameter
 - Ramp-rate, min./max. rigidity, injection/extraction energy, slow/fast extraction, cycle/store length
 - Cycles with(-out) post-mortem events
 - Operational ranges
 - OP year, between technical stops, OP week, OP day, etc.

- Data extraction should be driven use case examples
- 'Object oriented' vs. variable-by-variable design?
- Data export and low-level interfaces
 - Mainly expert analysis scripts
 - OS support? Java, C++, both? ROOT? Others?
- Who adds new data sources, ensures naming convention, ... ?
- How to treat data that is affected by calibration curves? Experiment requirements?
 - e.g. FastBCT, emittance, optics, ...: Keep best value? Update recently stored values with more accurate version?
 - Should one aim at storing values always with an error/uncertainty estimates?
- To be kept in mind: UTC vs. local time issue (↔ correlation with logbook)

- Instrumentation of Archiving System
 - Who read/writes what?
 - Amount of data? Throughput & response times?
- Ability to save/load preferred or commonly used list of variables (e.g. beam current & beam energy)
- Java GUI Data Extraction Tool "Face" of the Archiving System
 - Should aim at implementing most (90%) of the data analysis use-cases described before (also could serve as a documentation/example for other developers on how-to retrieve data, etc.)
- Website with standard variables might be useful
 - intensity/beam energy vs. time, transmission vs. time, beam brilliance vs. time availability for physics vs. time, ...

ture/required HW?

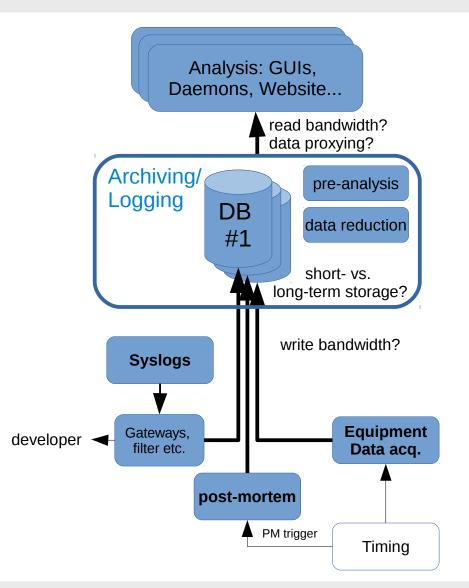
24

A Specification for circulation/approval by Q4-2015

- B Are there other important use-cases
- C Get better data rate/volume estimates:
 - detailed list of devices
 - variables per device class (1st iteration)
 - Post-mortem data
- D Meta-Information (filter conditions)
 - Need more input/confirmation from potential users
- E Check logging time constants
 - particularly for smaller machines (CR, HESR, ...)
- F Is proposed data reduction paradigm acceptable?

G First conceptual proposal for architecture/required HW?

Prepare and circulate spread-sheet to MPL, equipment groups, etc. detailing the number of variables, types, expected logging rates, ...



FAR Boundary Conditions (from a data management point of view)

- A) Data Coverage:
 - Shall/can we aim at full coverage? What should be logged?
- B) How to acquire/write data to file
 - Bandwidth, latencies?
 - Pushing vs. pulling of data?
- C) How to organise the data
 - Hierarchy & naming convention?
 - Short-term vs. long-term storage & performance?
 - Data reduction & pre-processing?
 - Data proxying?
- D) How to retrieve & analyse data
 - Bandwidth, latencies?
 - Standard/default use-cases?
 - GUIs, low-level interfaces (data format, supported programming languages, etc.), ...

FAR Aim of Logging/Archiving

- Collect and store pertinent accelerator data centrally to permit analysis of the accelerator performance and its proper function
- "Detailed Specification of the FAIR Accelerator Control System Component":
 - C. Handel, R. Mueller, "[..] 'Diagnostic Logging System'", F-DS-C-10e, 2012-08-10
 - L. Hechler, "[..] 'Archiving System'", F-DS-C-11e, 2011-08-10
 - J. Fitzek, "[..] 'Post Mortem System'", F-DS-C-13e, 2011-08-10
- 'Functional specifications' \rightarrow more details needed:
 - Q1: Data coverage? Targeted bandwidths? Targeted long-term data retention? Short- to long-term performance requirements?
 - Q2: Storage formats? Data retrieval, interfaces, etc?

FAR Typical Use-Cases Examples from GSI Operation (D. Ondreka)

FAIR accelerators are partly aliens

- We have strong expectations about their behavior
- Will (hopefully) largely turn out true
- Be prepared to reveal the hidden 'features':
 Log data as much as you can
- Examples from GSI operation
 - Mysterious reduction of SIS18 current:
 - No transmission change in UNILAC
 - By accident UNILAC profile grids had been printed
 - Vertical beam position changed
 - Traced to change of beam request timing
 - Sudden pressure rise in SIS18 extraction sector
 - All vacuum valves closed (logged, but not order nor source of vac. interlock)
 - FRS suspected guilty, but no hard evidence
 - Unexpected activation of H=2 cavity in SIS18
 - Comparison of beam loss patterns might help chasing down the source, but no data available
 - Dynamic vacuum questions

GSI Helmholtzzentrum für Schwerionenforschung GmbH

- Topic often comes up in analysis of MD studies
- Of course, nobody thought about recording...

Why we should log data as much as we can:

- We don't know in advance which data might be interesting/useful later
- Performance evaluation
 - Why was beam XY better/worse than before?
 - Search for long-term drifts and their causes
- Collect data routinely
 - No risk of forgetting to record data
 - Accumulation of data not only during MDs
 - Large data sets for all kinds of analysis
 - Somebody's noise is somebody else's signal
- New machines/operation modes
 - Backup data in case of unexpected problems
- MD studies often reveal unexpected effects
 - Relevant data might not have been recorded
 - Repetition of study would waste beam time
- Analysis of rare events
 - Typically not easily reproducible
 - Might have a history of 'near misses'
 - Might not be detectable by post-mortem

D. Ondreka, FAIR Operation, 1st FCCWG Meeting

20.05.2015

- Smart and poor choices
 - Oracle number format
 - Flexible, often human readable, precision configurable
 - Fixed-point arithmetic need to know the range of values in advance
 - Slow, wasteful for large amount of data
 - Floating point
 - Not human readable
 - Some standard issues (endianess not necessarily defined)
 - Precision adapted to scale of value
 - Often no conversion for further numerical processing

FAR "Logging" of Text Information

- ... debugging during development phases
 - loop counters, info messages etc.
- ... but also examples relevant to operation, e.g.:
 - Software Interlock System
 - Boolean flag ('yes'/'no') indicating a global interlock
 - text information indicating which system/group issued the interlock and also which other active interlocks were masked → useful for machine availability & fault analysis
 - Later: inspect specific device causing the interlock
 - (Semi-)automated daemon/background processes
 - Cycle-by-cycle feedback
 - Real-time feedbacks
- N.B. @GSI: "logging" for 'textual' and "archiving" for 'measurement' data
- → propose to use common definition? e.g.: http://en.wikipedia.org/wiki/Data_logger