

GSI Helmholtzzentrum für Schwerionenforschung GmbH

FAIR Operation: Experiments, Beam Parameters, and Challenges

David Ondreka 1st FCCWG Meeting GSI, 20.05.2015

Overview

- FAIR Baseline Experiments
- Beam Parameters
- FAIR Operation
- Operational Challenges
- Summary

FAIR Baseline Experiments

APPA

- SPARC: atomic physics in strong fields
- WDM+Hedgehob: dense plasma physics
- BIOMAT: biomedical and materials research

CBM

- HADES : hadrons in dense nuclear matter
- CBM: compressed baryonic matter

NUSTAR

- R3B: kinematically complete reaction studies with relativistic radioactive ion beams
- ILIMA: In ring lifetime and mass spectroscopy
- HISPEC/DESPEC: In beam and stopped beam γ spectroscopy of exotic nuclei
- MATS: Mass and lifetime spectroscopy in traps
- LASPEC: laser spectroscopy of exotic nuclei
- EXL: In-ring reaction studies with exotic nuclei

FAIR Beam Parameters: NUSTAR

- Reference ion U²⁸⁺
 - Highest design intensity
 - Beam energy high enough to cause damage (SIS100, Super-FRS target)
 - Tight loss and emittance budgets (dynamic vacuum, beam size)

Fixed Target	SIS18	SIS100
lon	U ²⁸⁺	
E _{ext}	200 MeV/u	1.5 GeV/u
N/pulse	1.5.1011	5·10 ¹¹
Rep. rate	2.7 Hz	< 0.3 Hz
E _{beam}	1 kJ	30 kJ
Blow-up (trans.)	1.4	1.2
Blow-up (long.)	2.0	3.0
Loss budget	≤ 20%	≤ 10 %

Storage Ring	SIS18	SIS100
lon	U ²⁸⁺	
E _{ext}	200 MeV/u	1.5 GeV/u
N/pulse	1.5·10 ¹¹	5·10 ¹¹
Rep. rate	2.7 Hz	0.5 Hz
E _{beam}	1 kJ	30 kJ
Blow-up (trans.)	1.4	1.2
Blow-up (long.)	2.0	1.7
Loss budget	≤ 20 %	≤ 10 %

- Other ion species
 - Limited by space charge in SIS18
 - Low charge state ions similar to U²⁸⁺
 - Similar emittance and loss budgets
 - Less demanding with decreasing Z
 - High charge state less demanding (e.g. U⁷³⁺)
 - Lower intensities due to space charge
 - More adiabatic damping at high energies
 - Dynamic vacuum not an issue

FAIR Operation

- Main requirements
 - Maximization of duty cycle
 - Flexibility similar to GSI
 - Beam patterns
 - Periodic (e.g. NUSTAR fixed target or ring)
 - Non-periodic (e.g. PP, APPA in (H)ESR)
- Complexity increase over GSI
 - More cycling machines per experiment
 - Stronger constraints from beamlines
- Frequent changes of experiments
 - Beam set-up must be routine (even with long accelerator chains)
 - Set-up should ideally not influence others

	GSI	FAIR
Accelerators	3	4
Exp. areas	20	6
Parallel Exp.	5	2
Accelerators / Exp.	1-3	3-5

- Beam time schedule
 - Similar to GSI operation (same users)
 - Maybe more long-runners (statistics)
 - Short setup beam times as today
- Flexibility demanded by experiments
 - Variation of beam parameters (daily)
 - Change of beam sharing (daily)
 - Switching of ion species (weekly)
 - Adjustment of schedule (monthly)

GSI Helmholtzzentrum für Schwerionenforschung GmbH

FAIR Parallel Operation Options

Periodic beam patterns, dominated by one *main* experiment:

6

FAIR Operation: Challenges

- Present GSI operation
 - Experiment set-up
 - 1 shift Unilac set-up per ion species
 - 1/2 shift per SIS18 experiment
 - Interruption of other experiments
 - Optimization by turning knobs
 - Little direct integration of beam instrumentation
 - Mutual influence
 - TK interferences (timing, species switching)
 - Magnetic hysteresis in SIS18
 - On-demand sharing (block mode or alternating)
 - Experience: Tight schedules create troubles
 - Operational robustness
 - Set-up and optimization procedures depend on operator, little standardization
 - Few performance indicators
 - No performance history
 - Error prevention and analysis
 - Unilac pulse time shortening (HW)
 - SIS18: no particular measures taken (Operators will 'play' with every beam!)
 - Error detection requires reproducibility (no history of data for later analysis)

- Does it scale to FAIR?
 - Experiment set-up
 - Unilac + SIS18 as before
 - 1 additional shift per SIS100 experiment?
 - Set-up of new exp. parallel to long-runners?
 - Poor efficiency and safety of knob turning in high intensity operation
 - Mutual influence
 - Magnetic hysteresis in SIS100
 - Change of SIS18 super-cycle while SIS100 runs?
 - What if experiments can't take beam?
 - Operational robustness
 - Do we want to depend on expert operators?
 - How do we measure performance? (Transmission isn't everything...)
 - How do we know we're as good as we can? (Compare with past performance!)
 - Error prevention and analysis
 - Blind knob turning may lead to unnecessary activation, quenches or machine damage
 - Some failures may be too frequent to ignore but difficult to reproduce, then what?

Machine Protection

SIS100 is not LHC, but:

- High intensity beams can destroy sensitive equipment
 - SIS100: el.stat. septum wires
 - HEBT: intercepting BI devices (grids, screens)
 - Super-FRS: target for single compressed bunch
 - Hardware interlock system required
 - No ,playing around' with high intensity beams
- S.c. magnets can be quenched by beam
 - Equipment protected by quench protection
 - Recovery time reduces machine availability
 - No ,playing around' with high intensity beams
- Excessive losses create activation
 - Poses problems for hands-on maintenance
 - Easily detected by transmission monitoring
 - No ,sloppy handling' of high intensity beams

- Hardware solutions for damage protection
 - SIS100: Fast beam abort system
 - SIS18, Super-FRS: Extraction inhibit
 - Detection of intercepting BI devices
- Software support by control system
 - Transmission control switching off beam
 - Radiation monitoring
 - Protection of critical settings
 - Tools for reliable and robust set-up procedures

Obvious consequence:

Control system must know when beam intensity becomes dangerous!

 Interlock system must receive reliable data on beam intensity (e.g. FCTs)

Machine Performance

Beam quality

- Optimal beam quality maximizes useful events
- Tight budgets on emittance/brilliance
 - Dilution causes losses and larger beam size
- Need tools to monitor
 - Transverse emittance (e.g. injection mismatch, non-linearities)
 - Longitudinal emittance (e.g. stripper foil degradation, injection mismatch)
- Efficiency
 - Reduction of set-up time increases beam on target
 - Need standardized set-up routines
 - Need beam based tools guiding operators through set-up procedures (instead of knob turning)
- Availability
 - Error prevention increases beam on target
 - Help operators avoid errors leading to down-time (e.g. transmission interlocks, quenches)
 - Need support by control system to protect operators and enforce robust operation (e.g. beam presence flag, intensity ramp-up procedures)

How to monitor emittance

- Longitudinal emittance
 - Coasting beam momentum spread (e.g. SIS18 at injection)
 - Longitudinal beam profiles (e.g. detecting degradation over time)
 - Phase space tomography
- Transverse emittance
 - Beam profiles
 (e.g. detecting degradation over time)
 - Combination with optics measurements to determine absolute values

Dynamic Magnet Effects

- Mostly iron dominated magnets
 - Hysteresis (memory) effects
 - Eddy current effects
 - Reproducible for known history
- Possible cures by software
 - Choice of cycle sequence
 - Conditioning cycles for clean history
 - Periodic patterns to fix history
 - Conditioning ramps to avoid hysteresis
 - Reserve time for eddy current decay
 - Modification of settings during setup
 - Parameters for compensation of hysteresis
 - Field corrections based on measurements
 - Cycle-to-cycle feedback systems (software) e.g. for radial position, orbit and tune
- Hardware measures
 - Real-time feedback systems
 e.g. for radial position, orbit and tune

10

Dynamic Vacuum

- Minimization of losses in SIS18
 - Improved MTI model, beam-based set-up based on FCT, IPM, Grids
 - Optimization and monitoring of longitudinal emittance to avoid capture losses
 - Precise control of orbit and tune during the ramp to avoid losses during ramp
 - Intensity modulation over 4 booster cycles in SIS18 to optimize bunch intensity
 - Online analysis of collimator currents and vacuum measurements for optimization
- Dynamic vacuum in SIS100
 - Similar constraints on beam control
 - Good integration of cryo catcher currents, BLM data and vacuum data readings
 - Long-term storage of data for offline analysis
 - Expect surprises!

Vacuum induced losses during SIS18 booster super-cycle

Parallel Operation

- Representation in the control system
 - Need strong CS support for handling beams for different experiments
 - Concepts of Pattern and Chain
 - Tools for creating and manipulating patterns
- Operation concept
 - Focus on beams (i.e. chains) rather than on accelerators
 - Allow simultaneous manipulations in same accelerator for different beams
 - Requires corresponding console concept
- Set-up of new beams parallel to long-runners
 - Base procedures on non-intercepting BI if possible
 - Build optimized tools for efficient use of intercepting BI
 - Establish standard settings for beam transfer lines (transfer okay if extraction adjusted properly)
 - Use conditioning ramps to preserve magnetic cycle to avoid disturbing long-runners
 - We know that this can be done from therapy!

Increasing Efficiency

- Set-up time reduces beam-on-target
 - Minimize set-up time by introducing reliable, robust set-up procedures
 - CS applications, using beam based approaches whenever possible (minimize 'knob turning')
 - Strong integration of BI into CS
- Example from GSI operation
 - Orbit correction expected to be very important for high intensity performance
 - Present orbit correction strategy
 - 2x2x2x12 = 96 SISMODI parameters for correction at injection and extraction, adjusted manually
 - No correction during ramp possible
 - No correction of radial position possible
 - Naïve scaling to SIS100 (12 🛛 84)
 - 2x2x2x84 = 672 parameters for orbit correction?
 - How long would it take to adjust these?
 - Correction during ramp required
 - Need something else
 - MIRKO Expert: example for integration of BI data and set value generation

- Beam based set-up
 - 'knob turning' sometimes unavoidable, but should be replaced by beam based approach if possible
 - BI data in combination with model allows for quantitative prediction of corrections
 - Tailored applications establish standard for set-up leading to reliable and reproducible performance
 - Critical settings can be protected by intercepting unreasonable values (e.g. decimal place error)

Preparing for the Unknown

- FAIR accelerators are partly aliens
 - We have strong expectations about their behavior
 - Will (hopefully) largely turn out true
 - Be prepared to reveal the hidden 'features':
 Log data as much as you can
- Examples from GSI operation
 - Mysterious reduction of SIS18 current:
 - No transmission change in UNILAC
 - By accident UNILAC profile grids had been printed
 - Vertical beam position changed
 - Traced to change of beam request timing
 - Sudden pressure rise in SIS18 extraction sector
 - All vacuum valves closed (logged, but not order nor source of vac. interlock)
 - FRS suspected guilty, but no hard evidence
 - Unexpected activation of H=2 cavity in SIS18
 - Comparison of beam loss patterns might help chasing down the source, but no data available
 - Dynamic vacuum questions
 - Topic often comes up in analysis of MD studies
 - Of course, nobody thought about recording...

Why we should log data as much as we can:

- We don't know in advance which data might be interesting/useful later
- Performance evaluation
 - Why was beam XY better/worse than before?
 - Search for long-term drifts and their causes
- Collect data routinely
 - No risk of forgetting to record data
 - Accumulation of data not only during MDs
 - Large data sets for all kinds of analysis
 - Somebody's noise is somebody else's signal
- New machines/operation modes
 - Backup data in case of unexpected problems
- MD studies often reveal unexpected effects
 - Relevant data might not have been recorded
 - Repetition of study would waste beam time
- Analysis of rare events
 - Typically not easily reproducible
 - Might have a history of 'near misses'
 - Might not be detectable by post-mortem

Summary

- FAIR Baseline Experiments: 11@22
- Beam Parameters
 - High intensities with damage potential for sensitive equipment
 - Tight budgets on losses and emittance blow-up
- Operational Challenges
 - Parallel operation increases complexity and complicates set-up procedures
 - Well adapted tools required
 - Concept of pattern and chains, applications for handling them
 - Machine protection by hardware and software interlock systems
 - Set-up beam concept and intensity ramp-up procedures
 - Protection of operator from accidentally applying dangerous settings
 - Reliable and reproducible set-up procedures implemented in software
 - Beam based set-up preferred over 'knob turning'
 - Data archiving for long-term analysis and analysis of unexpected events
 - Corresponding console concept
 - Focus on beam through accelerator chain instead of accelerator
 - Allow simultaneous manipulation of different beams in same accelerator