High-intensity operation: Between Poka-Yoke and Machine Protection

FC2WG, C. Omet, 21.10.2015
SIS100: Main Parameters – a versatile machine

- Circumference: 1083.6 m
 - (5 x length of SIS18)
- Superperiodicity: 6
- Cells per period: 14
- Focusing structure: Doublet
- 108 Dipoles (superferric)
 - 1.9 T, 4 T/s
 - Nominal current: 13.1 kA
- 168 Quadrupoles (superferric)
 - 27.8 T/m
 - Nominal current: 10.5 kA
- Extraction modes:
 - Fast, 1...8 bunches
 - Slow, KO-Extraction up to 10 s
- Acceleration for every ion from protons to uranium (and beyond?)
 - Variable quadrupole powering for γ_{tr} shifting or γ_{tr}-jump

<table>
<thead>
<tr>
<th>Item</th>
<th>RIB (U^{28+})</th>
<th>CBM (U^{92+})</th>
<th>Protons for pbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic rigidity @ extr. $B \cdot \rho$ [Tm]</td>
<td>27 ... 64 ... 100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Energy range @ extr. E [GeV/u]</td>
<td>0.4 ... 1.5 ... 2.7</td>
<td>10.7</td>
<td>28.8</td>
</tr>
<tr>
<td>Max. repetition rate f_{rep} [Hz]</td>
<td>0.35 (slow) 0.50 (fast)</td>
<td>0.09</td>
<td>0.4</td>
</tr>
<tr>
<td>Relativistic γ</td>
<td>... 3.9</td>
<td>12.4</td>
<td>31.9</td>
</tr>
<tr>
<td>Transition energy γ_{tr}</td>
<td>15.5</td>
<td>14.3</td>
<td>18.3 (45°)</td>
</tr>
<tr>
<td>Tune $\nu_{x,y}$</td>
<td>17.3/17.8 (slow) 18.9/18.8 (fast)</td>
<td>17.3/17.8 (10.4/10.3 (21.8/17.7°))</td>
<td></td>
</tr>
<tr>
<td>Number of ions per cycle N</td>
<td>5×10^{11}</td>
<td>1.5×10^{10}</td>
<td>2×10^{13}</td>
</tr>
<tr>
<td>Max. number of ions per second [1/s]</td>
<td>1.8×10^{11} (slow) 2.5×10^{11} (fast)</td>
<td>1.5×10^{9}</td>
<td>8×10^{12}</td>
</tr>
<tr>
<td>Extracted bunch form</td>
<td>1-10 s spill (slow) 10-100 s spill (fast)</td>
<td>Single bunch 70ns (fast)</td>
<td>Single bunch 50ns</td>
</tr>
<tr>
<td>Stored beam energy E_{beam} [kJ]</td>
<td>51.5</td>
<td>6.1</td>
<td>93.0</td>
</tr>
<tr>
<td>Emittance @ inj. $\epsilon_{x,y}$ [mm mrad]</td>
<td>34 x 14</td>
<td>15 x 5</td>
<td>12 x 4</td>
</tr>
<tr>
<td>Emittance @ extr. $\epsilon_{x,y}$ [mm mrad]</td>
<td>1 x 4.0 (slow) 9.6 x 4.0 (fast)</td>
<td>1.0 x 0.7</td>
<td>2.0 x 0.7</td>
</tr>
</tbody>
</table>

Geometrical Acceptance:
3 x maximum emittance

Dynamic Aperture:
3.4 sigma
SIS100: Lattice design criterias

1. Length: 5 x SIS18 length (≈ 1 083.6 m)
2. Reference ion operation: U^{28+}
 - Localize beam ionization losses
 - Control vacuum pressure
3. Secondary ion: Protons
 - Variable γ_t-optics by multiple quadrupole families
 - Fixed γ_t-optics utilizing fast γ_t-jump quadrupoles
4. RF system
 - Room temperature cavities, dispersion free straight sections
 - State-of-the-art bunch manipulations: Bunch merging & compression, Barrier buckets
5. Versatile extraction modes
 - Fast bipolar Kicker system (internal emergency dump)
 - Slow extraction: KO-excited beam, resonant extraction

Images courtesy of M. Konradt / J. Falenski
SIS100: Lattice design

- **Doublet focusing structure**: up to 100% collimation efficiency reachable with focusing order DF
 - First called “storage mode lattice” because many U\(^{29+}\) particles survived one complete turn.
 - **Dipoles act as a charge state separator** when bending angle per cell is chosen correctly.
 - Quadrupoles are stronger than obviously necessary (over-focussing) to assure survival of beam until it reaches the collimator (**which gives other problems → protons**).

- U\(^{29+}\) loss positions are nicely peaked at the position of the collimators

- Dynamic vacuum calculations showed that in spite of the very well controlled losses, a **huge pumping speed** will be required
 - Cold vacuum chambers
 - SC magnets
Risk assessment

- **What to protect?**
 1. **Lives (people)!**
 2. **Health (people)!**
 - e.g. losing the thumb ≅ losing one eye → partial disability
 3. **Environment**
 - Radiation, chemicals,
 - EMC (Electromagnetic Compatibility, not $E=mc^2$)
 - Noises
 - ...
 4. **Machine**
 - Damage of expensive equipment (> 100,000,000 € !)
 - Long-running replacement times / repair times
 - Damage
 - Activation (“1 W/m” → 1 mSv/h after 4 h @ 40 cm after 100 days of operation)
 - Availability

- **Legal necessity**
 - §§ 5, 6 Arbeitsschutzgesetz, § 3 Betriebssicherheitsverordnung
 - § 6 Gefahrstoffverordnung, §§ 89, 90 Betriebsverfassungsgesetz

- **What remains?**
 - **Residual risks** (for radiation protection: ALARA = As Low As Reasonable Achievable)
Hazard and Risk for accelerators

- **Hazard**: a situation that poses a level of threat to the accelerator. Hazards are dormant or potential, with only a theoretical risk of damage. Once a hazard becomes “active”: incident / accident. Consequences and possibility of an incident interact together to create **RISK**, can be quantified:

\[
\text{RISK} = \text{Consequences} \cdot \text{Probability}
\]

Related to accelerators:

- Consequences of an uncontrolled beam loss
- Probability of an uncontrolled beam loss
- The higher the **RISK**, the more **Protection** is required
The 2008 LHC accident happened during test runs without beam.

A magnet interconnect was defect and the circuit opened. An electrical arc provoked a He pressure wave damaging ~600 m of LHC, polluting the beam vacuum over more than 2 km.

53 magnets had to be repaired

Over-pressure

Arcing in the interconnection

Magnet displacement

R. Schmidt
2008 SPS run

- Impact on the vacuum chamber of a 400 GeV beam of 3×10^{13} protons (2 MJ).
- Event is due to an insufficient coverage of the SPS MPS (known !).
- Vacuum chamber to atmospheric pressure, downtime ~ 3 days.

Risk = (3 days downtime + dose to workers) x (1 event / 5-10 years)
Incidents happen

Risk = (9 month downtime + dose to workers) x (1 event / 12 years)
Due to a power converter failure, a slow extraction was transformed into a fast extraction.

- Extraction in milliseconds instead of seconds.

As a consequence of the high peak power, a Gold muon conversion target was damaged and radio-isotopes were released into experimental halls.

- Machine protection coupled to personnel protection!

Investigations and protection improvements done, J-PARC restart after ~9 month.

One insufficiently covered failure case had major consequences!
Risk Management Gradient

Poka-Yoke 'Mistake Proofing'
- intercepting common mistakes, procedural errors, etc.
- affecting machine performance

Use-cases:
- minimising machine activation (ALARA principle)
- preventing quenches
- investment protection

Devices:
- LSA, settings monitoring, ...
- PC, FMCM (?), QPS, FCT, BLMs, ...
- passive absorbers, machine optics, material choices

Systems:
- Sequencer & operational procedures
- FAIR (SW) Interlock System
- FAIR-SIS100 Fast Beam Abort Sys. (HW Interlock System)
- FAIR Machine & System Design

time-scales:
- 10s of seconds → minutes/hours
- 100 ms
- 50 us
- < turn

R. Steinhagen
Pokā-Yoke (ポカヨケ) – 'Mistake-Proofing'

- To avoid (yokeru) inadvertent errors (poka)
- Industrial processes designed to prevent human errors
 - Concept by Shigeo Shingo: 'Toyota Production System' (TPS, aka. 'lean' systems)
- Common mistakes, procedural errors, etc. affecting machine performance
- Real-World Examples:
 - Polarity protection of electrical plugs (e.g. phone, Ethernet cable)
 → SIS18 profile grid connectors
 - Procedures: e.g. ATM machine: need to retrieve card before money is released (↔ prevents missing card)
FAIR Machine Protection Concepts

- Machine & System Design
 - Passive absorbers, machine optics, collimation system, material choices, ...
- Active protection
 - Fast-Beam-Abort System (SIS100 & SIS18, turn → 'ms'-scale)
 - Setup-Beam-Flag (SBF)
 - Beam is safe for playing with, “Pilot beam”
 - Interlock System (slow, '≈100 ms' scale)
 - Beam Transmission Monitoring System
- Procedural protection
 - Beam-Presence-Flag (BPF)
 - no high-intensity beam injection into previously empty machine
 - Management of Critical Settings
 - Poka-Yoke
 - Intensity Ramp-up Concept
 - Don't inject high-intensity beam without having the optics & machine performance checked with lower intensity beams
 - Sequencer (guide/help operation to avoid common mistakes)
Proposal: FAIR Beam Modes – State Diagram

Verification of machine-protection functionality
Minor adjustment of intensity related effects (e.g. \(\Delta Q(\text{intensity}) \))

- **Pilot Beam**:
 - Intensity Ramp-Up
 - Adjust

- **No Beam**
 - cool down + cycling after magnet quench or main PS failure
 - N.B. beam mode = machine mode
 - “handshake”

- **Post-Mortem/Beam Dump**
 - Recovery: No Beam

- **Stable Beams/Production**
 - Here’d be Happiness producing physics beams most settings locked-down

N.B.:
1) omitted arrows to 'No Beam'/Pilot Beam' for better visibility (always possible)
2) modes follow existing normal setup routine, initial transition acknowledged by operator, subsequent driven automatically by sequencer

basic accelerator setup injection \(\rightarrow \) extraction typically with (but not limited to) low setup intensities (SBF=true)

normal operational path
- error/fault case
- low-intensity

R. Steinhagen
Machine protection

- In the past (and present operation of SIS18), devices protect only themselves
 - Caused e.g. by media supply, short circuit, ...
 - Usually instantly power down and
 - generation of an interlock.
- When a device powers down, the result for the machine could be bad
 - Magnets can quench (by beam energy deposition, insufficient cooling, ...),
 - Sensible equipment could be damaged by beam heating
 - S-FMEA (System Failure Modes and Effect Analysis) has to be done.
- Foreseen to protect the machine:
 - Collimation systems (passive protection)
 - Equipment monitoring and beam monitoring
 - Quench detection and protection (QD/QP)
 - Interlock systems
 - Emergency kicker + dump

1. Avoid that a specific failure can happen
2. Detect failure at hardware level and stop beam operation
3. Detect initial consequences of failure with beam instrumentation

How to stop beam operation:
1. Inhibit injection
2. Extract beam into emergency beam dump or
3. Stop beam by beam absorber / collimator
Is activation an issue?

- **Yes!**
 - Components have to be human maintainable, so (uncontrolled!) activation has to be limited.
 - Hands-on-maintenance:
 - Dose rate < 1 mSv/h
 - at a distance of 40 cm
 - after 100 days of operation and 4 hours of downtime.

- Standard assumption for protons: **Uncontrolled** losses have to be < 1 W/m
 - 5…10% protons at 4…28.8 GeV/u
- For heavy ions: < 5 W/m
 - 20% U^{28+} at 200 MeV/u
 - 10% U^{28+} at 2.7 GeV/u
 - Already larger than dynamic vacuum effects allow.

- Controlled losses: Extraction sector S5 is already prepared; components have to be remote / fast serviceable (Magnetic + Electrostatic septa, radiation resistant quadrupoles).
- Halo collimators, Cryo catchers would be more activated.
- Building design has got separate beam and supply areas. The latter would be accessible without any activation problems.
Beam impact on accelerator components

- **SIS100 stored beam energy**
 - Ions: 3.7 ... **51.5 kJ**
 - 11.2 g TNT / 1.5 ml Kerosine (a few drops)
 - Protons: 12.9 ... **93.0 kJ**
 - 20.2 g TNT / 2.7 ml Kerosine (half a tea spoon)

- **Melting/sublimation of acc. components (stainless steel):**
 - SPS event with 450 GeV beam: Vacuum chamber burnt through with 2 MJ beam
 - Experimental **damage limit for protons** ~52 kJ/mm²
 - **SIS100**: with protons: ~1 kJ/mm²
 - PS: ~1 kJ/mm²
 - Bragg peak has to be considered
 - Temperature should not be an issue (details on the next pages)

- **Quench limit of SC cable (Cu/NbTi)**
 - Nuclotron cable: ~1.6 mJ/g [1]
 - Quench recovery time:
 - 10 min at the Serial Test Facility,
 - ~1 h in the SIS100

Is melting an issue? (I)

- **SiS18 beam** onto FRS target
 - Cu, Al und C Targets, 1 mm thick.
 - Graphite → no problems.

- Strong focused $\sigma_x=0.44\, \text{mm}$ $\sigma_y = 0.99\, \text{mm}$, 125 MeV/u, $7\times10^9 \ldots 1\times10^{10} \, \text{U}^{28+}/\text{Spill}$.

- Sometimes, up to 100 shots were necessary to drill a hole.

- Average power was only $\sim 1\, \text{W}$, but peak energy $\sim 3\, \text{kJ/g}$.

- Process: target melts spontaneously but hardens again before next shot (only radiation cooling).

H. Weick
Is melting an issue? (II)

- Take damage limit for protons onto steel (52 kJ/mm² ~ 1 kJ/g)
 - Protons: max. 93 kJ beam energy, **beam spot size** r=0.75 mm
 - Ions: max. 51.5 kJ beam energy, **beam spot size** r=0.56 mm ➔ ignored dE/dx
- One should think those spot sizes can not be achieved at maximum energy by optics of the machine:
 - $r_{avg}=3.8$ mm (2σ) for p γ_1-shift optics
 - $r_{avg}=5.4$ mm (2σ) for ion optics
- But when calculating temperature rise analytically:
 \[
 \Delta T = \frac{N \cdot dE/dx}{c \cdot A \cdot \rho}
 \]
 - thin targets, no phase transition
 - no shock waves, no heat transfer or radiation
- Full design beam power for
 - Protons: no problem!
 - **Heavy ions** (5×10^{11} U^{28+}) are above the limit!
 - But: Before it comes to melting, s.c. magnets will quench already (6 orders of magnitude earlier)

Material Properties

<table>
<thead>
<tr>
<th>Material</th>
<th>Steel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used in</td>
<td>Yoke, He-pipes Chambers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting Temp. / K</td>
<td>1,921</td>
</tr>
<tr>
<td>Specific heat c / J/(g*K)</td>
<td>0.49</td>
</tr>
<tr>
<td>Latent melting heat / J/g</td>
<td>270</td>
</tr>
<tr>
<td>Total melting energy density (T=15 K) / J/g</td>
<td>1,204</td>
</tr>
<tr>
<td>Total melting energy density (T=293 K) / J/g</td>
<td>1,068</td>
</tr>
<tr>
<td>Density ρ / kg/m³</td>
<td>7,870</td>
</tr>
<tr>
<td>Proton beam spot radius for melting @15K / mm</td>
<td>0.4</td>
</tr>
<tr>
<td>Max. ΔT for proton beams with 3.8mm spot radius / K</td>
<td>28</td>
</tr>
<tr>
<td>Uranium beam spot radius for melting @15K / mm</td>
<td>5.6</td>
</tr>
<tr>
<td>Max. ΔT for Uranium beams with 5.4mm spot radius / K</td>
<td>2,291</td>
</tr>
</tbody>
</table>
1x10^{10} \text{U}^{28+} \text{ are } \text{“not dangerous“} \ \Rightarrow \text{ do not cause instant permanent damage by melting room temperature sections of SIS100...}

Safe beams / pilot beams should contain at maximum half / a quarter of that intensity!
Potential beam damage in SIS100: Slow extraction

- When a
 - full intensity high energy heavy ion beam spirals out
 - in a short time (µs...ms) and
 - hits a small volume (e.g. wires, thin vacuum chambers)
 - especially at room temperature regions,
 - material can melt.

- Unavoidable during slow (KO) extraction: Heavy ions colliding with the electrostatic septum wires are stripped and lost
 - At least ~10% of the beam will hit the wires during slow extraction.
 - W-Re wires day 0 version: 100 µm “thick”, final version: 25 µm thick (thermal / stability issues)
 - Warm (radiation hard) quadrupoles behind the septum.
 - Loss will be controlled (collimator / low desorption rate surface).

- Step width of particles at slow extraction has to be limited to avoid over-heating of the wires
 - Low intensity pilot beams,
 - Phase space tomography,
 - Limiting extraction length at full heavy ion intensity to durations e.g.> 5 s.
 - Active protection with beam loss monitors (BLM’s)
Emergency dump of SIS100

- Part of the active machine protection.
- Emergency dump system:
 - Fast bipolar kicker magnets for extraction,
 - 2.5 m long, internal absorber block below the magnetic septum #3.
- Design:
 - No need for synchronous ramping of beam line to the external dump and “dead time” during ramp up of HEBT switching magnets.
 - Beam dump will happen in ~26 µs after generation of request ➔ fast enough for nearly all processes.
 - Various abort signals will be concentrated in a switch matrix (allows masking of some sources e.g. for low intensity beams). **Incorporation of e.g. experiment aborts is easily possible.**
 - Kicking into a coasting beam will result in up to 25% beam losses (smear out after emergency dump). Have to develop more sophisticated methods (Shut off KO extraction, rebunch, kick?).
- Absorber:
 - Special chamber in lower part of magnetic septum #3
 - 20 cm graphite in front, 225 cm absorber (W, Ta, …)
 - Tilted or saw-tooth surface to smear out Bragg peak in the absorber material (limits temperature rise).
FLUKA simulations of emergency dump

Simulation assumptions:
- 5.0×10^{11} U$^{28+}$, 1.0-2.7 GeV/u
- 2.5×10^{13} p, 29.0 GeV/u
- Gaussian beam distribution with $\sigma_{xy} = 3$ mm
- Full beam energy deposited within < 1 μs

- No melting, but absorber surface has to be inclined (e.g. by 20° which gives a factor of 4 less temperature rise).
- Both maximum and average energy depositions are well below quench limit.
- With W instead of Ta, energy deposition in the SC quadrupole coils drops by another 30%.

Quench limit

<table>
<thead>
<tr>
<th>Ion</th>
<th>Max. Coil energy deposition / mJ/g</th>
<th>Avg. Coil energy deposition / mJ/g</th>
<th>Quench margin</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5×10^{13} p, 29 GeV</td>
<td>0.29</td>
<td>0.063</td>
<td>5.5 / 25.4</td>
</tr>
<tr>
<td>5.0×10^{11} U$^{28+}$, 1.0 GeV/u</td>
<td>0.01</td>
<td>0.003</td>
<td>145 / 592</td>
</tr>
<tr>
<td>5.0×10^{11} U$^{28+}$, 2.7 GeV/u</td>
<td>0.10</td>
<td>0.025</td>
<td>16 / 64</td>
</tr>
</tbody>
</table>

Quench limit: 1.6 mJ/g ≈ 0.2 mJ/cm3

U$^{28+}$, 2.7 GeV/u
Risk assessment: System-FMEA

- Failure Modes and Effects Analysis (FMEA) on the system level of SIS100
 - Goal: Identify the machine failures in a rational approach,
 - Done according to IEC 61508,
 - Standardized values for personnel safety,
 - Subjective chosen values for machine protection (separately!).
 - Only single errors are accounted for!

- How to get Lambda or MTTF (Mean Time To Failure) values?
 - Experience with existing or similar components/prototypes, ...
 - GSI data,
 - Nuclotron data,
 - LHC data.
 - Calculated (on a per-part basis) according to ISO 13849-1:2008 and MIL Handbook for
 - SCU (Scalable Control Unit):
 $\lambda = 8,626$ FIT
 MTTF (Mean Time To Failure) = 13.2 years
 - Quench detection cards from KIT:
 $\lambda = 1,240$ FIT
 MTTF = 92 years

<table>
<thead>
<tr>
<th>Severity</th>
<th>Meaning for personnel</th>
<th>Meaning for the machine</th>
<th>Examples</th>
</tr>
</thead>
</table>
| S1 | Minor injuries at worst | Short accelerator recovery time MTTR < 2 h | - Target irradiated wrongly
- Magnet quench
- Superficial damage of a beam pipe
- Fuse blown
- Machine activated |
| S2 | Major injuries to one or more persons | Accelerator recovery time MTTR < 1 d | - Target destroyed
- Protective devices (e.g. at septum) burnt through
- Safety valves in He supply or return blown |
| S3 | Loss of a single life | Long shutdown MTTR < 1 a | - Septum wires burnt through
- He safety valves of cryostats blown
- Busbar/cables burnt
- Holes in beam pipes |
| S4 | Multiple loss of life | Catastrophe | - Should never happen! |

$\lambda_{UCL} = \frac{X^2_\alpha \nu}{2T}$ \quad with \quad $\nu = 2f + 1$

1 FIT = 1 Failure in 10^9 h
Risk assessment: How to define SIL levels?

- When defining a safety function, e.g.: „Dump Magnet Energy when a quench occurs“, how reliable the function has to be?
- S3: Damage so large that downtime >> 1d
- A1: No personnel present when powering S.C. magnets!
- G1: It is possible to prevent the magnet from quenching (e.g. observing temperature)
- W2: Possibility for a quench is >5%, but <25% of operation time
- **SIL3 is necessary for achieving a safe quench detection and dump resistor activation**, \(\text{PFH} < 1 \times 10^{-7}\) failures/h.

- Other example: PSS: “Deny user request to enter restricted area during beam operation.”
- also SIL3, but with \(\text{PFD} < 1 \times 10^{-3}\) failures/demand.

<table>
<thead>
<tr>
<th>Low demand [failure/request]</th>
<th>High demand or continuous request [failure/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average probability of dangerous failure at request of the safety function</td>
<td>Average probability of dangerous failure of the safety function</td>
</tr>
<tr>
<td>SIL / PL</td>
<td>PFD\text{avg. min} \text{ (=)}$$</td>
</tr>
<tr>
<td>4 / e</td>
<td>1,00E-05</td>
</tr>
<tr>
<td>3 / d</td>
<td>1,00E-04</td>
</tr>
<tr>
<td>2 / c</td>
<td>1,00E-03</td>
</tr>
<tr>
<td>1 / b</td>
<td>1,00E-02</td>
</tr>
</tbody>
</table>
Risk assessment:
Magnets, busbars, current leads

- Failures:
 - Quenches
 - Thermal runaways
 - Turn-to-GND short
 - Turn-to-Turn short

- Most severe failures:
 - Quenches (destroys busbars or magnet coils)
 - Dipole:
 - full beam could hit the E-Septum wires in ~1 ms
 - Quadrupole, Chrom. Sextupole, Res. Sextupole, Octupole:
 - beam could hit the Halo collimators, E-Septum wires or external targets / detectors during slow extraction in ~1 ms

- Chosen mitigations:
 - Magnet interleaving Quench Detection (QD)
 - Emergency dump for detected failures (started just before magnet energy dump)
 - Interlocks

- Failsafe behavior:
 - ~99% reduction of risk
 - Already incorporated in hardware design (SIL3 for QD!)
 - Turn-to-Turn shorts only detectable during commissioning and pilot beam operation!
Risk assessment: Power Converters

- Failures:
 - DCCT or control loop causes more or less current than set
 - IGBT shorts
 - Media (cooling water) or sensor failures
 - Primary Voltage supervision sensor failures
 - PE failures (dipoles, quadrupoles, septum 3)

- Most severe failures:
 - Dipole PC: full beam could hit the E-Septum wires in ~1 ms
 - Quadrupole, Chrom. Sextupole, Res. Sextupole, Octupole, Radres. Quadrupoles PC’s: beam could hit the E-Septum wires or external targets / detectors during slow extraction in ~1 ms

- Chosen mitigations:
 - Redundant DCCT in some cases
 - Emergency dump for detected failures (started just before magnet energy dump)
 - Interlock

- Failsafe behavior:
 - ~92% reduction of risk
 - Still (minor) modifications in hardware design necessary
Risk assessment: RF acceleration system

- Failures:
 - LLRF Amplitude control/DAC failure
 - LLRF DDS / Group DDS failure
 - Cavity GAP Arc ignition, shorts
 - Resonance frequency control failure
 - Driver / Power Amplifier failures
 - B2B Transfer unsynchronized
 - Media or sensor failure
 - 50 Ohm Terminator failure

- Most severe failure:
 - Gap arc ignition:
 At least a part of beam will hit cryo collimators (spiraling into it in around 1 ms), happens quite often

- Chosen mitigations:
 - Emergency dump for detected failures
 - Interlock (for media or sensor failures)

- Failsafe behavior
 - ~89% reduction of risk
 - Minor modifications in hardware/software design are necessary
Risk assessment: Injection/Extraction system

- Failures:
 - Single kicker does not fire, voltage deviation
 - Single kicker fires unintentionally
 - E-Septum sparking

- Most severe failures:
 - E-Septum sparking:
 - full beam could hit E-Septum wires
 - Single extraction kicker does not fire / voltage deviation:
 - beam can hit septum or HEBT / detectors / targets

- Chosen mitigations:
 - Emergency dump
 - partial beam loss can not be prevented
 - no warning time
 - up to ~30% beam loss when kicking in coasting beam during slow extraction
 - Low intensity pilot beam for optimizing settings
 - E-Septum has to be actively protected (wire supervision)
 - “Cleaning” of beam which remains after extraction kick onto the emergency dump.

- Failsafe behavior:
 - 89% reduction of risk
 - Further tracking studies will follow to identify and reduce risks
Risk assessment: Global/Local cryogenic system

- Failures:
 - Valve or valve control failure
 - He supply/return line rupture or leak
 - Voltage breaker leakage or rupture
 - Valve bellow rupture
 - Compressor / pressure regulation failure

- Most severe failures:
 - Voltage breaker leakage or rupture: Paschen limit, repair time
 - Valve bellow and He supply/return line rupture: long shutdown for repair
 - Most failures would result in quench, but this is detected by pressure / temperature sensors and QD.

- Chosen mitigations:
 - Pressure readout, Emergency dump (started with magnet energy dump, which is more important) for fast processes
 - Interlock for slow processes
 - QA (Quality Assurance) for all weldings and QD (Voltage tabs) for all interconnections
 - Maintenance plans for valves

- Failsafe behavior:
 - 88% reduction of risk
 - Care has to be taken in design and read-out of insulation vacuum pressure (cold cathode gauges) – some failures have short rise times.
Risk assessment: Control system

- **Hardware, Software and Operators**
- **Failures:**
 - Wrong data delivered to device
 - Timing system does not trigger → all effects possible...
 - Slow extraction efficiency too low
 - Feedback systems (Orbit, TFS, LFS) fail (currently not calculated)
- **Most severe failures:**
 - **Software errors:** full beam could hit anywhere
 - **Physic model errors:** full beam could hit anywhere
 - **Operator** thinks in the wrong direction: full beam could hit anywhere
- **Chosen mitigations:**
 - Low intensity **pilot beam** for verifying optics, physics model and machine settings, **intensity ramp up concept, locking of critical parameters at high intensities**
 - BLM’s, Transmission supervision, Emergency dump
 - Optics check for machine setting parameters, Training for operators
 - Data check (read-back) of machine settings (cyclic every few minutes); Set and Actual Value - window comparison
- **Failsafe behavior**
 - ~99% reduction of risk
 - Human factors still an issue
 - SCU and timing system already designed with very large MTBF

![Graph showing risk assessment results]

- Downtime / h/a
- Events / a

- **Dangerous undetected failures**
- **Dangerous detected failures**

![Graph showing failure intensity factors (FIT)]

- Slow extraction efficiency too low
- Timing System does not trigger
- Wrong CO feedback to steiners
- Wrong data delivered to device

- Downtime / h/a: [Data]
- Events / a: [Data]
Risk assessment: Beam dynamics and others

- Failures:
 - Beam instabilities (difficult to estimate correctly)
 - Beam in kicker gap
 - UHV pressure rise, vacuum leakage, FOD (objects in vacuum chamber – LEP, ESR, SIS18)
 - HEBT / Experiment note ready, EMC, Earthquakes, … (not calculated)

- Most severe failures:
 - Beam instabilities
 - Cold UHV chamber leaks (long downtimes for repair!).

- Chosen mitigations:
 - Emergency dump
 - BLM’s, cryo catcher current readout
 - Robot for searching “UFO”s

- Failsafe behavior:
 - 33% reduction of risk
 - One never knows what high energy / intensity or compressed beams do in real
 - Beam physics studies are ongoing
SIS100 risk assessment: Results

• Most severe (hard to detect at warm and long repair times): cold leaks / defects.

• Heavy ion beam power of SIS100 is high enough to damage sensible equipment (e.g. e-septum).

• All devices are designed self-protecting when internal failures occur, but not necessarily have optimum behavior with respect to the beam. Work is progressing to improve this.

• For emergency dump: Beam losses caused by spurious errors (e.g. power converter problems, RF failures, quenches, ...) as well as dynamically unstable beams can be mitigated effectively by the emergency dump system.

• By failsafe concept, up to 85% of the total failures in time can be detected or mitigated.

• Given 6,000 h operating hours per year, an availability of 66% (3,957 h/a) is currently estimated.
Comparison of SIS100 with CERN PS

for Proton operation:

Similarities

<table>
<thead>
<tr>
<th></th>
<th>SIS100 (γ_1-shift settings)</th>
<th>PS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particles per cycle</td>
<td>2×10^{13}</td>
<td>3×10^{13}</td>
</tr>
<tr>
<td>Injection energy / GeV</td>
<td>4.0</td>
<td>1.4</td>
</tr>
<tr>
<td>Extraction energy / GeV</td>
<td>28.8</td>
<td>20.0</td>
</tr>
<tr>
<td>Stored energy Inj. / kJ</td>
<td>12.7</td>
<td>6.8</td>
</tr>
<tr>
<td>Stored energy Extr. / kJ</td>
<td>91.1</td>
<td>96.9</td>
</tr>
<tr>
<td>Max. beam radius Inj. / mm</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>Max. beam radius Extr. / mm</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>Min. beam radius Inj. / mm</td>
<td>3.6</td>
<td>17.7</td>
</tr>
<tr>
<td>Min. beam radius Extr. / mm</td>
<td>1.5</td>
<td>5.6</td>
</tr>
</tbody>
</table>

Differences

<table>
<thead>
<tr>
<th></th>
<th>SIS100</th>
<th>PS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnet type</td>
<td>SC</td>
<td>NC</td>
</tr>
<tr>
<td>Beam pipe vacuum chamber thickness / mm</td>
<td>0.3</td>
<td>1.5</td>
</tr>
<tr>
<td>Heavy ion beam energy / kJ</td>
<td>51.5</td>
<td>~7.1</td>
</tr>
</tbody>
</table>

- For p operation, CERN PS and SIS100 similar in energy and spot size (=damage potential); for heavy ions, SIS100 is more dangerous...
- No major accidents in PS due to beam losses
- Spot size in SIS100 even larger with γ_1-jump settings
- LHC (one beam): 362 MJ => 4 000 times more energy!
After an absorber length of 1 m:
- hardly any primary protons left
- homogeneous energy distribution by secondaries
- Temperature values well below the sublimation/melting points
- Energy deposition values in upper and lower coils identical within 30 %
5 \times 10^{11} \text{ U}^{28+}, 2.7 \text{ GeV/u}
energy deposition in the dump

Graphite dump (20 cm) Tantalum absorber (225 cm)

distance along z-axis (cm)

projections in YZ plane, averaged over x view from the top

\sigma_y = 0.3 \text{ cm}

projections in XY plane, averaged over z view along the beam direction

\sigma_y = 0.6 \text{ cm}